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ABSTRACT

The lamellibranch gill is used for various vital functions ranging from food 

capture to ion regulation. The foundation for many of these functions is the transport of 

water through the gill. This dissertation examines the organization of intrinsic gill 

muscles and the associated connective tissue in the freshwater bivalve Dreissena 

polymorpha with comparisons made to Corbicula fluminea and Toxolasma texasensis. 

Gill muscles can be divided into two groups: those associated with the connective tissue 

sheets that underlie external and internal gill epithelia; and those encased in connective 

tissue bands oriented perpendicular to the bases of gill filaments. The sets of muscles are 

oriented to serve complementary functions of drawing filaments together and of reducing 

ostial openings, thus affecting water flow through the gill. The supportive tissue in the 

gills of each of the three species is composed of a similar extracellular matrix with 

interspersed muscle fibers. These matrices consist of a periodic acid Schiff-positive 

tissue supported by small collagen fibrils as determined by morphological and 

biochemical examination. The ultrastructure of the muscle fibers associated with the 

connective tissue corresponds with a known type of smooth muscle. The gill muscles of 

D. polymorpha contract in response to acetylcholine and FMRFamide but relax with 

serotonin application. External calcium is required for muscle contraction and a proper 

balance between NaCl and KC1 is critical for the maintenance of maximal responsiveness. 

Acclimation to hyperosmotic conditions is dependent in part on the activity of a ouabain- 

sensitive Na+/K+ ATPase. The gills of all three species show a common relationship 

between live gill area and dry body mass. Each of the animals have comparable ostial 

dimensions and possess the ability to control these dimensions through muscular tone. 

The similarity in structure and apparent function of the intrinsic gill muscles in each of the 

species examined suggests that the muscles are an important, conserved feature of the 

bivalve gill.

vii
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CHAPTER 1 

INTRODUCTION

1
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Filter-feeding bivalves can play a central role in the ecology of aquatic ecosystems 

when they occur in high densities. Dame (1993) compared the functional role of filter- 

feeding marine bivalves to that of bison on the great plains of North America, where a 

single group of organisms plays a dominant role in grazing. Filtration of suspended 

particles by bivalves can influence ecosystem function largely through material uptake and 

subsequent biodeposition (Jdrgensen 1990; Dame 1993). These processes are important 

because they may ultimately affect parameters other than material fluxes, such as nutrient 

processing and retention (Dame 1993). The importance of bivalve filter-feeding to an 

ecosystem is largely determined by the size of the bivalve population relative to the 

resident water volume. The entire resident water volume in certain sites may be filtered 

every 0.7 to 13 days depending on the filtration capacity and water volume and may 

represent eutrophication control (Cloem 1982; Officer et al. 1982; Smaal and Prins 

1993). In fact, in the Netherlands, Dreissena polymorpha is being studied as a tool in 

eutrophication control (Smit et al. 1993). In the Great Lakes region of the U.S., zebra 

mussels (£). polymorpha) can exhibit significant filtration capacities. Bunt et al. (1993) 

estimated that small zebra mussels were capable of pumping between 39 and 96% of the 

water column per day at a western Lake Erie site and Fanslow et al. (1995) estimated that 

a zebra mussel population at a Lake Huron site could filter between 0.2 and 1.3 times the 

resident volume per day. Further, using a bioenergetics model approach, Madenjian 

(1995) estimated that about 25% of the primary production in western Lake Erie was 

consumed by the zebra mussel population. These tremendous filtration capacities may 

lead to dramatic ecosystem effects such as enhanced water clarity, increased macrophyte 

and cyanobacterial densities, shifts in energy from pelagic to benthic foodwebs, and 

enhanced biomagnification of toxins to higher trophic levels (Maclssac 1996). Heavy 

zebra mussel infestations serve as an extreme example of the potential influence of filter- 

feeding bivalves on the ecosystem.
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The ability of bivalves to exploit a filter-feeding lifestyle is intimately related to gill 

structure. During the Ordovician, small bivalve deposit feeders are thought to have 

developed an enlarged gill that not only served a respiratory function, but also allowed 

small particles to be filtered from the water column (Cope 1993). The small gills that 

primarily served a respiratory function are still represented in a few extant bivalve groups 

as the protobranch type of gill. The originally expanded gill allowing filter-feeding was 

presumably similar to the filibranch gill found in many extant bivalves (Cope 1993). 

While these filibranch gills are believed to have arisen in a single group of animals early 

in the evolution of bivalves, the eulamellibranch gill type has arisen independently several 

times from the filibranch gill in several bivalve groups (Cope 1993). In all filter-feeding 

bivalves, water is drawn between filaments by lateral ciliated cells and into the central 

portion of the gill. The difference between the filibranch gill and the eulamellibranch gill 

is that in the latter gill type the filaments are connected by sheets of subfilamentar tissue, 

while the filibranch gill is composed of less united filaments (Fig. 1.1). All of the 

animals in this study possess the eulamellibranch type of gill.

Theoretical models of the bivalve gill (Foster-Smith 1976; Jprgensen et al. 1986) 

have been developed in order to understand the basic processes involved in filtration. 

These models are simplified versions of the gill that compartmentalize the bivalve into a 

series of canals that can be represented by pressure heads as water moves through the 

animal. Simplifying assumptions include estimates of the dimensions of the water 

passageways through the gill. For example, Foster-Smith (1976) assumed the water 

canals through the gill to be circular tubes 60 pm in diameter and 100 pm  long, while 

Jprgensen et al. (1986) modelled these as rectangular slots 40 pm in diameter and 200 pm 

long. Both of these models predict that the largest changes in pressure through the 

system is from the water leaving the animal via the excurrent siphon and secondarily from 

the water moving through the interfilament spaces of the gill. Based on these findings,
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frontal

subfilamentar
tissue abfrontal

Fig. 1.1. A comparison between the eulamellibranch gill (left side; exemplified by D. 
polymorpha) and the filibranch gill (right side; exemplified by M. edulis). In both gill 
types, water flows between filaments (f) from the frontal side of the gill to the abfrontal 
side. The filaments are joined by sheets of subfilamentar tissue in eulamellibranchs, but 
are much more independent in the filibranch gill. Water flows through water canals in the 
subfilamentar tissue in the eulamellibranch gill (not shown). (The total thickness of the 
lamellae shown is 55 |im for M. edulis and 25 |im for D. polymorhpha). Light 
microscopy.
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Foster-Smith (1976) argued that the excurrent siphon was the most important adjustable 

resistance factor for the bivalve pump, believing that the ostial dimensions could not 

change fast enough to be the primary adjustable factor. Jdrgensen and coworkers 

(Jdrgensen et al. 1986; Jdrgensen et al.1988; J0rgensen 1989; J0rgensen 1990) have 

indicated that the interfilament distance is the most important adjustable factor in the 

bivalve pump because this distance affects the interference between opposing lateral 

ciliated tracts. Overall, the capacity of the bivalve pump to transport water is determined 

by the pump characteristics (ciliary beat) and the system resistances (dimensions of the 

water passageways) (Foster-Smith 1976). Whether the dimensions of the gill affect the 

ciliary activity directly or affect the resistance to water flow, significant changes in these 

dimensions should affect water flow through the animal. Interestingly, Silvester (1988) 

compared measured pump capacities with theoretical ciliary capacities based on widely 

accepted parameters. He found that the ciliary activity alone was insufficient to account 

for measured pump capacities and suggested that there might be some factor unaccounted 

for in the current theoretical models.

The contribution of the intrinsic musculature to basic gill function is almost 

completely unknown. Jbrgensen (Jprgensen et al. 1988; Jdrgensen 1990) has indicated 

that the interfilament distance is controlled by muscles of the gill axis, the filaments being 

drawn together as the gill axis is retracted. This description completely ignores the fact 

that an extensive musculature within the gill itself is a common feature of the bivalve gill. 

With the exception of the studies of Setna (1930), Elsey (1935), Atkins (1943) and later 

by Gardiner et al. (1991), the descriptions of intrinsic gill muscles have been largely 

anecdotal. Elsey (1935) indicated that variation in ostial dimension, locally or through the 

gill as a whole, was accomplished by the interaction of blood pressure, elastic skeletal 

material, and intrinsic gill muscles and this variation could affect water flow. Atkins 

(1943) believed that slight contractures of the muscles worked in a coordinated fashion
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with the gill cilia, leading to fine regulation of feeding mechanisms. She further thought 

that the violent contractions of the gills, for example those preceding rapid closure of the 

valves and the subsequent expulsion of water from the animal, were for the protection of 

the gills. Further study of the general anatomy, regulatory control, coordination, and 

basic function of these muscles has been almost non-existent. In his comprehensive 

study of oyster feeding mechanisms, Nelson (1960) wrote, ‘Too little study, anatomical 

and physiological, has been made of musculature of oyster’s gills, and of relation of gill 

movements to operation of ciliary mechanisms.” He concluded that the muscular 

movements were important in feeding and that “further research in this field should yield 

rich returns.”

The initial and major focus of this dissertation is the basic structure and function 

of the intrinsic gill musculature of Dreissena polymorpha (Pallas 1771; Superfamily 

Dreissenacea) and their possible contribution to the regulation of water flow through the 

bivalve gill. This species is a relatively recent inhabitant of North America, apparently 

released from ballast water near Detroit, MI in 1985 (Hebert et al. 1989) and may have 

originated from the Black Sea/Caspian Sea region of Europe (Smirnova et al. 1993; 

Ludyanskiy 1993). The animals have quickly spread throughout the Great Lakes region 

and into the Mississippi River system (Ram and McMahon 1996). In addition to D. 

Polymorpha, comparative analysis of Corbicula fluminea (Muller 1774; Superfamily 

Corbiculacea) and Toxolasma texasensis (I. Lea 1857; Superfamily Unionacea) is 

reported. The dreissenids and corbiculids share a common lineage (Nuttall 1990; Morton 

1993) and underwent rapid radiation into freshwater habitats during the Miocene. The 

unionids have inhabited freshwater since the Triassic (Haas 1969) and are the only one of 

the three groups native to North America. The groups exhibit differences in physiology, 

morphology, and life history traits important to the general biology of the animals. For 

example, one important character, unique among the three species to D. polymorpha, is
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the possession of a heteromyarian condition (Morton 1993) which has allowed the 

exploitation of a hard substratum. This heteromyarian form is characterized by a 

reduction in the anterior adductor and byssal retractor muscles as well as a flattening of 

the ventral margin and neotenic retention of the byssus. This form has played an 

important role in the success of D. polymorpha (Morton 1993). Other differences include 

variability in the ion transport characteristics of these species (Dietz et al. 1994; Dietz et 

al. 1996; Dietz et al. 1997; Horohov et al. 1992). It seems reasonable that interspecific 

differences may also exist between the general structure and function of the integral gill 

muscles. The similarities and differences observed between the species may give insight 

into the general function of these gill muscles.

In this dissertation, Chapter 2 focuses on the functional organization of the 

muscles and associated connective tissue elements in the gill of D. polymorpha and their 

apparent ability to regulate water flow. This section not only shows the general scheme 

of how the muscles and connective tissue function together, but also demonstrates that the 

active musculature responds to known transmitter substances. Included are comparisons 

to C. fluminea and T. texasensis which show that these species have the same basic 

ability to alter their gill dimensions as D. polymorpha.

Chapter 3 provides analysis of muscle cell ultrastructure and partial 

characterization of the connective tissue in all three species. All of the gills are made of a 

similar collagenous connective tissue matrix with interspersed smooth muscle fibers. 

Although the presence of collagen has been generally accepted for a number of years, this 

is the first explicit identification of collagen as the supportive tissue in the bivalve gill.

The smooth muscles are similar structurally and correspond to a specific smooth muscle 

ultrastructure found in other molluscs and in echinoderms.

Chapter 4 begins study on the effects of ionic composition on gill muscle function 

in D. polymorpha. Muscle contraction was monitored indirectly by measuring changes in
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gill dimension over time. Extracellular Ca2+ is an absolute requirement for contraction 

and the balance between Na+ and K+ is also important. The muscles can acclimate to a 

hyperosmotic environment as long as the appropriate concentration of K+ is present.

This acclimation process can be partially blocked by ouabain, demonstrating the 

importance of a Na+/K+ ATPase for the response. Overall, these muscles respond to 

their ionic environment as one might expect from active smooth muscles.

Finally, Chapter 5 examines the overall dimensions among the three species’ gills 

and the ability of their intrinsic muscles to alter these dimensions. Differences in the 

ability of freshwater bivalves to filter bacterial sized particles is largely dependent on the 

structure of the ciliated cells of the gills. Although there are differences in the absolute 

size and dimensions of the gills, the relative size and dimensions in all three species are 

uniform.

The comparative studies indicate that active smooth muscles and associated 

collagenous connective tissue are a common element of the eulamellibranch gill. The 

muscle fibers respond to neural transmitters and work with the connective tissue skeleton 

to affect the dimensions of the gill. Despite significant differences in certain anatomical 

parameters of the gills, the overall size and dimensions seem to be fixed. Together, these 

results suggest that the intrinsic muscles are a conserved feature that are important for 

basic gill function.
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CHAPTER 2

FUNCTIONAL ORGANIZATION OF INTRINSIC GILL MUSCLES IN DREISSENA 
POLYMORPHA AND RESPONSE TO TRANSMITTERS IN VITRO*

£

Reprinted with permission of Invertebrate Biology. Originally published as:
Functional organization of intrinsic gill muscles in zebra mussels, Dreissena polymorpha 
(Mollusca: Bivalvia), and response to transmitters in vitro 
Scott Medler and Harold Silverman 
Invertebrate Biology 116 (3): 200-212
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Lamellibranch gills are often the major site of gas exchange, ion transport, and 

nutrient capture depending on the species of bivalve (Barrington 1979; Dietz 1985; Pearse 

et al. 1987; Kays et al. 1990; McMahon 1991). In some bivalves, the gill also serves as a 

reproductive brood chamber (Ortmann 1911; Silverman et al. 1985; Silverman 1989; 

Tankersley and Dimock 1992; Tankersley 1996) or the organ housing symbiotic 

organisms that produce nutrients for the bivalve (Southward 1986; Cavanaugh et al.

1987; Dando and Spiro 1993). All of these vital functions can be influenced or regulated 

by the amount of water flowing through the gill. While there are clearly variations among 

bivalve families (Ridewood 1903; Atkins 1937), the major force generating water flow in 

a eulamellibranch is provided by the lateral ciliated cells on adjacent filaments (J0rgensen 

1975; Silvester 1988; McMahon 1991). The movement of these cilia propels water into 

the mantle cavity through an incurrent siphon. Inside the mantle cavity, water is drawn 

into the gill through external ostia that lead into water canals (Pearse et al. 1987; Gardiner 

et al. 1991; McMahon 1991). Water moves through these canals into a central water 

channel via internal ostia, and then travels dorsally through the water channel to the 

suprabranchial chamber (Barrington 1979; Pearse et al. 1987; Gardiner et al. 1991; 

McMahon 1991) (see Fig. 2.1). Water exits the animal through the excurrent siphon.

While the driving force for water movement is ciliary activity, there are several 

control points in this pathway that are under muscular control. For example, the incurrent 

and excurrent siphons vary greatly in their diameter in response to the tone of integral 

muscles. Foster-Smith (1976) characterized the excurrent siphon as the most important 

adjustable resistance factor influencing water flow through several bivalve species. In 

their model of the bivalve pump, Jdrgensen et al. (1986) supported this view with the 

estimation that the excurrent siphon accounts for the largest pressure head in the water 

pump. Lei et al. (1996) observed changes in excurrent siphon diameter of Dreissena 

polymorpha in response to changes in particle concentration. Water flow may also be
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Fig. 2.1. General organization of the gills in D. polymorpha with respect to the gross 
morphology of the animal.
(a) A lateral demibranch (LD) and a medial demibranch (MD) compose a gill on each side 
of the animal. The byssus (Bs) and foot (F) of the animal are also seen. SEM.
(b) A higher magnification micrograph of a single demibranch showing the outer ciliated 
epithelium (CE) and the internal structure of the demibranch where the outermost lamella 
has been removed. Water moves past the ciliated epithelium and into the central water 
channel via water canals (not shown). These water canals empty into the central water 
channel through internal ostia (small arrows) in the water channel epithelium (WCE).
The central water channel is partitioned into water tubes by the septa (S) which connect 
opposing gill lamellae. Water moves dorsally (large arrows) through the water tubes into 
the suprabranchial chamber (not shown) before exiting through the excurrent siphon (not 
shown). SEM.
(c) A diagrammatic composite of the elements of a demibranch (not to scale). The 
outermost layer is the ciliated epithelium. Supporting the ciliated epithelium is a loose 
connective tissue sheet, filament supports (f), and cross-struts (cs) between filaments. 
Bands of connective tissue and muscle fibers (B) lie deep to the base of the filament 
supports and are continuous with the deep portion of the cross-stmts. A second 
connective tissue sheet supports the water channel epithelium. The hemocoel of the gill 
lies between the connective tissue sheet supporting the ciliated epithelium and the 
connective tissue sheet supporting the water channel epithelium. Associated with both 
loose connective tissue sheets are arrays of muscle fibers (m) that radiate in many 
directions. External and internal ostia (O) are associated with the external and internal 
portions of the gill, respectively. Septa (S) connecting the lamellae are continuous with 
the water channel epithelium and the associated connective tissue sheets.
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controlled by integral gill muscles that control interfilament and ostial dimensions. In the 

J0rgensen et al. (1986) model of the bivalve pump, the interfilament canals collectively 

are considered to be the second largest pressure head in the pump, accounting for over 

30% of the total pressure in the system. Increases in pressure are inversely related to the 

square of the interfilament distance. J0rgensen (1989) also indicated that the distance 

between opposing bands of lateral cilia, controlled by the width of interfilament canals, is 

“the main factor in determining pump pressure and flow rate in bivalves”. Other studies 

have demonstrated a relationship between ostial dimension and water flow, particle 

filtration, and filtration efficiency (Nelson and Allison 1940; Dral 1968; Foster-Smith 

1975, 1976)

Many studies have documented neural control of the bivalve gill (reviewed by 

Paparo 1988). Application of exogenous transmitters has been known for some time to 

affect ciliary activity (Aiello 1960; Aiello 1962; Aiello and Guideri 1964). The effects of 

transmitters on intrinsic musculature (Gardiner et al. 1991) and overall pumping rate 

(Jones and Richards 1993) have been examined more recently. Previous accounts 

reported that the gill muscles of D. polymorpha respond to exogenous transmitters 

(Duncan et al. 1994; Medler and Silverman 1994). Acetylcholine, FMRFamide (Phe- 

Met-Arg-Phe-NH2), and serotonin are all physiologically important in a variety of 

molluscan species. Although there is considerable variation in response between and even 

within a species, FMRFamide and acetylcholine are often excitatory neurotransmitters, 

while serotonin is often inhibitory or neuromodulatory (Muneoka and Twarog 1983).

This study examines the role of connective tissue elements, intrinsic gill muscles, 

and their ability to alter the dimension of water passageways in a homorhabdic 

eulamellibranch gill. Dreissena polymorpha is a non-native freshwater species recently 

introduced into North America from the Caspian Sea/Black Sea region of Europe 

(Smirnova et al. 1993; Ludyanskiy 1993) and represents a phylogenic group distinct from
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the previously studied bivalves. I report here that the musculature in the gill of D. 

polymorpha responds to exogenous acetylcholine, FMRFamide, and serotonin. 

Stimulation by FMRFamide and acetylcholine caused muscle contraction in the gill while 

serotonin caused muscle relaxation. Observation of live gill tissue revealed complex and 

dynamic changes in interfilament distance and internal ostial area consistent with 

regulation of water flow. These changes are related to the contraction of the intrinsic 

musculature integrated with the associated connective tissue of the gill. Incidental 

observations of Corbicula fluminea and Toxolasma texasensis were consistent with those 

made in D. polymorpha.

METHODS

Animals and maintenance

Dreissena polymorpha (Pallas 1771) were collected from Lake Erie at the mouth 

of the Raisin River in Monroe, Michigan and from the Mississippi River near 

Plaquemine, Louisiana. Corbicula fluminea (Muller 1774) and Toxolasma texasensis (I. 

Lea 1857) were collected from ponds near Baton Rouge, Louisiana. The animals were 

maintained in artificial pondwater (0.5 mM NaCl, 0.4 mM CaCl2 , 0.2 mM NaHC03, 

0.05 mM KC1, and 0.2 mM MgCl2) in aerated aquaria under laboratory conditions of 

approximately 22-25° C and 12h light /  12h dark cycles.

General gill preparation

Gills were excised by freeing the gill from its dorsal attachment with forceps and 

placed in a Ringer’s solution designed to approximate blood composition of the animals 

(Dietz et al. 1994) (5 mM NaCl, 5 mM CaCl2, 5 mM NaHCOj, 0.5 mM KC1, 5 mM 

NaS04, 0.5 mM MgCl2; 48 mOsm). Calcium-free Ringer’s used in various experiments 

had the same composition as the above solution except that the CaCl2 was omitted and 4 

mM EDTA was added. The osmolality and pH were the same in both solutions. Lateral 

and medial demibranchs were separated by cutting along their dorsal connection.
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Muscle labelling with phallacidin

The f-actin of muscle bands was labelled with phallacidin conjugated to a 

fluorescent marker, NBD [N-(7-nitrobenz-2-oxa-l,3~diazol-4-yl)phallacidin].

Phallacidin is a bicyclic peptide that specifically binds f-actin at nanomolar concentrations 

in muscle and non-muscle cells from many different plants and animals (Molecular 

Probes Inc., Eugene, OR). Excised demibranchs were split into single lamellae and 

stripped of epithelium by placing them in a Ca2+-free Ringer’s solution containing 4 mM 

EDTA, and passing them through the end of a small transfer pipette. Phallacidin 

application procedures were those recommended by Molecular Probes. Briefly, single 

lamellae were extracted with a solution of -20° C acetone for 3 to 5 min and then air dried. 

The lamellae were incubated with phallacidin in Ringer’s solution for 20 min at 25° C . 

Finally, the lamellae were washed twice with Ringer’s solution. Samples were observed 

on a Nikon Microphot FXA using an excitation filter of 450-490 nm and a barrier filter 

of 520 nm. Gills were also observed with Nomarski illumination to compare structural 

correlates of labelled areas.

Preparation for transmission electron microscopy (TEM)

Prior to gill excision, hemolymph samples were taken from animals by inserting a 

26 gauge needle between the valves and into the pericardial space (Fyhn and Costlow 

1975; Dietz et al. 1994). Hemolymph osmolality was measured on a Precision Systems 

freezing point osmometer. A 2% glutaraldehyde solution was adjusted with phosphate 

buffer to match the hemolymph osmolality. Excised gills were cut along the filaments 

into strips about 3 mm wide and quickly fixed by immersion in the glutaraldehyde 

solution for 1 h. Gills were rinsed twice in phosphate buffer and post-fixed in 1% O s04 

for 1 h, rinsed twice in phosphate buffer, and dehydrated in a graded ethanol series. Gill 

strips were embedded in LR White (London Resin Co.) medium grade resin by placing
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them in a 1:1 mixture of ethanol and resin for 24 h. They were transferred to 100% resin 

for 12 h, and embedded flat in fresh resin at 60° C for 24 to 48 h.

Gills were sectioned with a Reichert-Jung ultracut E ultramicrotome at 60-90 nm 

thickness with glass knives. The gills were sectioned in two planes: (1) in a dorso- 

ventral plane between adjacent filaments, and (2) in frontal sections (en face) across gill 

filaments and through the muscles surrounding internal ostia. Sections were stained with 

3% uranyl acetate for 2 min followed by Reynolds’ (1963) lead citrate for 2-5 min. The 

sections were examined with a JOEL 100CX transmission electron microscope operating 

at 80 kV.

Preparation of gills for scanning electron microscopy (SEM)

Dissected gills were placed in Ringer’s solution as described above. In some 

instances, gills were exposed to acetylcholine, FMRFamide, or serotonin for 10-20 min 

prior to fixation. The solution was carefully drained and quickly replaced with liquid 

nitrogen in order to prevent muscular contraction of the gills during fixation. After a few 

s, the nitrogen was removed and the frozen gills were immersed in the osmotically 

balanced 2% glutaraldehyde solution for 1 to 4 h. Gills were rinsed in phosphate buffer 

and post-fixed in 1% Os04 for one h. After osmication, gills were rinsed in phosphate 

buffer and dehydrated in a graded ethanol series. Gills were wrapped in lens paper, 

critical-point dried, and mounted on stubs. Specimens were sputter coated with a mixture 

of gold and palladium (20 nm) and viewed with a Cambridge S-260 SEM.

Measurements of ostial areas were made by cutting out and weighing printed images. 

These masses were converted into areas by calibrating with a known area.

Confocal microscopy

Optical sections (2 pm) of the connective tissue structures were observed by 

confocal imaging techniques with a Noran Instruments Odyssey XL Laser Confocal 

Microscope. Prior to observation, gills were incubated with a horseradish peroxidase-
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FTTC (fluorescein-5-isothiocyanate) conjugate at 1 mg/mL. Initially this methodology 

was used in an attempt to label neural elements of the gill. However, the marker was 

absorbed into the highly porous connective tissue elements, effectively labelling the 

connective tissue but not the nerves.

Measurement of demibranch contraction

Excised demibranchs were placed in Ringer’s solution on a glass microscope slide 

such that the demibranch was allowed to float freely in the solution. The solution was 

then aspirated to leave the demibranch flattened on the surface of the slide. The gill was 

rapidly immersed in a Ringer’s solution containing acetylcholine or FMRFamide at 

concentrations from 10‘3 to 10'6 M. The transmitter-containing solution was aspirated 

immediately following its application, leaving the demibranch flat on the slide. During 

this procedure, gills were observed at a magnification of about 10X with a dissecting 

microscope and recorded on VHS videotape. Video images were digitized and measured 

with Image-1 computer software (Universal Imaging Corp.). Gill area was measured 

prior to transmitter exposure and at timed intervals after transmitter application. Changes 

in gill area over time were either expressed as the relative reduction from the initial area 

(% of initial area), or as surface area (mm2).

Observation and measurement of perfused gill tissue

Internal ostial dimensions were observed using a Nikon Diaphot inverted 

microscope with Hoffman Modulation optics or Nomarski (DIC) optics at magnifications 

of 400X or 600X and recorded on VHS videotape. Excised demibranchs were split 

along the interlamellar septae into ascending and descending lamellae. Individual lamellae 

were placed in a 200 (il perfusion chamber with the water channel epithelium visible and 

held in place by nylon mesh. 60 or 70% Ringer’s solution perfused the tissue at a flow 

rate of between 1.5 and 5 mL/min. The solutions perfusing the lamellae were introduced 

at the bottom of the chamber and aspirated at the top. Thus, water flow was theoretically
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unidirectional from bottom to the top of the chamber. Solutions were changed with a 

valve that switched to a second reservoir.

In addition to control observations with only Ringer’s solution bathing the 

organs, the effects of serotonin, acetylcholine, and FMRFamide were observed at 

concentrations from 10'3 to 10'6 M. In some cases ostial dimensions were measured with 

Image-1 computer software (Universal Imaging Corp.) as described above. Measured 

values were calibrated with a stage micrometer in the experimental set-up. Recordings 

used for measurements were from open ostia flat enough to be within a single plane of 

focus throughout an experiment and reasonably stable in dimension prior to experimental 

manipulation. Images for figures were processed with Adobe Photoshop (Adobe 

Systems, Inc.) to optimize image brightness and contrast.

In addition to general observations, pre-treatment ostial areas were statistically 

compared with post-treatment areas for each of the three transmitters at a concentration of 

10"5 M. In each case, ostial area was measured immediately preceding transmitter 

application and again after 5 min of perfusion with a transmitter solution. Pre-treatment 

and post-treatment areas were compared with paired t-tests (n = 10 for each transmitter). 

Statistics were performed with SAS version 6.10 (SAS Institute, Cary, NC).

RESULTS

The gill of Dreissena polymorpha is of eulamellibranch form whose gross 

structure has been described previously (Ridewood 1903; Morton 1969). Fig. 2.1 relates 

the gross organization of the gill and the direction of water movement through it to the 

more complex organization of the gill. Fig. 2.1c is a diagrammatic composite of the gill 

showing the position of the connective tissue elements and intrinsic musculature 

described below.
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Connective tissue skeleton

Stripping the epithelial tissue from the underlying supportive tissue in living gills 

leaves a “skeleton” that has filaments at a maximum distance from one another (see Fig. 

2.1c). This “skeleton” has a compressible yet resilient texture. The gill filaments are 

supported by a fibrous connective tissue matrix (Fig. 2.2a). This matrix is composed of 

a network of thin fibers that are several nanometers in diameter. Aside from this rather 

dense homogeneous matrix there are no further supportive structures in the filaments.

The filaments do not contain calcified rods as are found in the gills of unionids. The 

cellular elements associated with the filament connective tissue and vascular sinus are 

located in the central midline of the filament.

The connective tissue matrix supporting individual filaments is continuous with 

connective tissue struts that cross the filaments at right angles approximately every 30-80 

pm (Fig. 2.2b). This distance can vary with animal size, contractile state, and fixation 

state. These cross-struts have an elongate figure eight morphology and have the same 

fibrous appearance as the filament supports (Fig. 2.2). During muscular contraction, the 

cross-stmts bend at their attachment to the filaments and become more parallel to the 

filaments; they also bend inwardly (Fig. 2.3). The connective tissue supporting the 

epithelial cells is a thin sheet of loose, but fibrous connective tissue (Fig. 2. lc, 2.2d,

2.4a, 2.4b, 2.5a). One sheet underlies the external ciliated epithelium while a second 

sheet underlies the internal water channel epithelium. The hemocoel is enclosed between 

these two sheets of connective tissue and their associated epithelium (see Fig. 2. lc). In 

areas where the cross-stmts occur, the thin sheet of connective tissue dips under the stmt 

so that the stmt lies between the sheet and the outer epithelium (Fig. 2.2d). The deep 

regions of the cross-stmts form bands of connective tissue perpendicular to the filaments. 

These bands are interspersed with muscle fibers (see below).
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Fig. 2.2. Connective tissue support of the gill of Dreissena polymorpha.
(a) Filament support demonstrating the fibrous connective tissue of die structure. Tissue 
forming a cross-strut (cs) is continuous with the filament support. TEM.
(b) Gill stripped of epithelium to expose underlying connective tissue support. Parallel 
filaments (f) are separated by perpendicular cross-struts (cs). Nomarski illumination 
[Differential interference contrast (DIC)]
(c) A 2-pm-thick laser confocal optical section of a cross-strut labelled with horseradish 
peroxidase-FlTC.
(d) A gill stripped of its external ciliated epithelium. The filament supports (f) and cross
struts (cs) overlay the connective tissue sheet (cts) which encloses the hemolymph space. 
An external ostium (O) is visible. SEM.
(e) Thin section of a cross-strut showing the filamentous nature of the connective tissue. 
TEM.
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Fig. 2.3. Cross-struts during contraction and at rest.
(a) Frontal section of a contracted gill. The positions of attachment of the cross-struts to 
the filaments (arrowheads) are shifted with respect to one another, causing the cross- 
struts (position marked by white lines) to be bent toward a position parallel to the 
filaments (f). In many instances the middle portion of the cross-struts are bent inwardly, 
out of the plane of the section. Light microscopy.
(b) Frontal section of a relaxed gill. The cross-stmts (cs) are within a single plane and are 
approximately perpendicular to the filaments. Light microscopy.
(c) Gill stripped of its epithelium and in a partially contracted state. Where filaments are 
drawn more closely together, the cross-stmts are bent toward the parallel position. Those 
filaments closer to the relaxed state are closer to the perpendicular position. Ostia (O) are 
visible. SEM.
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Fig. 2.4. Intrinsic gill muscles.
(a) Hemocoel side of the connective tissue sheet underlying the internal water channel 
epithelium. Presumptive muscle fibers (m) are closely associated with the connective 
tissue (ct). The margin of an internal ostium (O) is just visible. SEM.
(b) Frontal section of a gill at the level of an internal ostium (O). The epithelial tissue (e), 
muscle fibers (m), and connective tissue (ct) near the ostium are clearly visible. TEM.
(c) Bands (B) of connective tissue and muscle, which he in the hemocoel at the base of 
filaments. Water channel epithelium (WCE) has largely been stripped away to reveal the 
bands, but some remains with intact internal ostia (O). SEM.
(d) Cross section of the connective tissue (ct) and muscle fiber (m) bands shown in 4c. 
The connective tissue filaments are arranged in parallel with the muscle fibers and dense 
bodies (arrows) connect muscle fibers with the surrounding connective tissue. TEM.
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Fig. 2.5. Gill stripped of its epithelium.
(a) Filament supports (f), the connective tissue sheet (cts), ostia (O), and bands (B) 
crossing the filaments at right angles are visible with Nomarski illumination.
(b) Same gill labelled with phallacidin to reveal f-actin fibers in presumptive muscle 
bands. Large bands of muscle fibers lie at right angles to the filaments, while fibers 
associated with the connective tissue sheet form a complex web-like pattern around the 
ostia (arrows).
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Muscle organization

Muscle fibers were identified structurally using TEM and by their positive 

labelling with NBD-phallacidin. Groups of smooth muscle fibers lie in bands at right 

angles to gill filaments, and muscle fibers are also found in a web-like orientation in 

association with the loose connective tissue sheet that underlies the external and internal 

epithelium (Figs. 2.1c, 2.4 and 2.5a). The muscle fibers crossing the gill filaments are 

encased in well-organized bands of connective tissue with fiber orientation paralleling the 

longitudinal axis of the muscle fibers (Fig. 2.4d). These bands lie at the base of the gill 

filaments in the hemocoel space between the outer ciliated epithelium and the inner water 

channel epithelium. The individual muscle fibers are attached to the connective tissue 

fibers by peripheral dense bodies (Fig. 2.4d).

A second major set of muscle fibers is found in the sheets of connective tissue 

underlying the epithelial layers of the gill (Figs. 2. lc, 2.4a,b and 2.5). Contraction of 

these muscle fibers causes a reduction in the size of the water canal and the ostia leading 

to the water channel. These individual muscle fibers are small, generally on the order of 

I - 2 pm in diameter (Fig. 2.4) and of unknown length. Nervous tissue lies in close 

association with these fibers, but the overall organization of these nerves has not been 

formally assessed (not shown).

Demibranch contraction

To assess the effects of general intrinsic muscle contraction demibranchs were 

isolated and exposed to the neurotransmitters acetylcholine and FMRFamide. Gross area 

of the demibranch was measured over time, with contraction of the musculature resulting 

in reduced demibranch area. Gill area was reduced following application of a stimulating 

transmitter, with the greatest reduction occurring in the first 10 to 20 s and then became 

asymptotic to a level of maximum reduction (Figs. 2.6 and 2.7). Gills returned to 

Ringer’s solution lacking transmitters were observed to relax after several min.
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Fig. 2.6. Digitized image of a single demibranch that has contracted after application of 
acetylcholine. The figure shows the gill just prior to acetylcholine application (top) and at 
60 s after the addition of acetylcholine. At both time points, the absolute area (mm2) is 
shown above and the relative reduction in gill area (% of initial area) is shown below.
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Reduction in demibranch area was concentration-dependent following exposure to either 

acetylcholine or FMRFamide (Fig. 2.7). Responses to acetylcholine and FMRFamide 

were similar in magnitude and time course (Fig. 2.7).

Observation of perfused gill tissue

Over 20 h of video-taped observations were made on the internal water channel 

epithelium and ostia in these preparations. Generally, ostial area decreased in response to 

either acetylcholine or FMRFamide and ostial area increased following serotonin 

application. The paired comparisons of pre-treatment and post-treatment areas generally 

support these observations. Ostial area was reduced to an average of 55% of the pre

treatment value following acetylcholine treatment (p <0.01) and to an average of 67% of 

the pre-treatment value following FMRFamide treatment (p < 0.02) (Fig. 2.8). The ostial 

area of serotonin-treated preparations increased to an average of 113% of the control 

value, but this difference was not statistically significant (p < 0.1) (Fig. 2.8). In the 

serotonin treatment group, 7 of the 10 ostia increased in size to an average of 120% of the 

control area.

Overall, conspicuous changes in ostial size and shape were observed over time, 

including movements in the gills of C. fluminea and T. texasensis (Figs. 2.9d-i; 2.10;

2.11). While most ostia were fairly stable in dimension during our observations (Fig.

2.1 la), a few ostia were found to be active in their movements even without transmitter 

application (Figs. 2.10d-f and 2.1 lb). Transmitter-treated preparations showed a wide 

range of ostial size and shape over short time periods (Fig. 2.9 and Fig. 2.1 lc-e). 

Interfilament distance followed the same pattern of change as ostial area, decreasing when 

the ostial area decreased and vice versa.

DISCUSSION

The major muscles in the gill of Dreissena polymorpha cross the base of the gill 

filaments at right angles and radiate within the thin sheets of connective tissue supporting
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Fig. 2.7. Reduction in gill area (% of initial area) as a function of time in response to 
exogenous acetylcholine and FMRFamide. Dose-dependent responses to 10'6 M 
(squares), 10'5 M (diamonds), 10"4 M (circles), and 10‘3 M (triangles) acetylcholine or 
FMRFamide are shown. Both experiments used 10 animals, with each of the four 
demibranchs per animal randomly distributed to a transmitter concentration (Each point is 
the mean ± se).
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exposure to the respective transmitter. Transmitter concentration in each case was 10‘5 M. 
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Fig. 2.9. D. polymorpha ostial areas between gills and for individual ostia over time, 
(a-c) Examples of internal ostia and water channel epithelium. SEM. (a) Serotonin 
treated gill (10-5 M): average ostial area of 2760 pm . (b) Untreated gill: average ostial 
area of 1444 p m . (c) FMRFamide treated gill ( 10'5 M): ostia completely closed (arrows 
denote dorsal and ventral margins).
(d-f) Digitized video images of a single ostium from a perfused live gill preparation (DIC 
optics). The asterisks in this series mark two reference cells that are visible throughout 
the series. The preparation was briefly treated with serotonin (approximately 10'^M) a 
few min prior to setup in the chamber, (d) Ostium as it is perfiised with a control 
Ringer’s solution 1.25 min Drior to treatment with FMRFamide (10‘5 M for 1.5 min).
The ostial area is 2525 pm2! (e) Same ostium 1.16 min after the start of FMRFamide 
treatment. The ostial area has been reduced to 2013 |im2 (80% of the area in d). (f)
Same ostium 2.5 min following the initial exposure to FMRFamide. The ostium in this 
figure is completely occluded (arrows denote dorsal and ventral margins).
(g-i) Digitized video images of a single ostium from a perfused preparation (Hoffman 
modulation optics), (g) Single ostium 2 min prior to treatment with serotonin (10*4 M for 
1.33 min). The ostial area is 912 pm2, (h) Same ostium after 1.33 min of serotonin 
treatment. The ostial area is 2017 pm2 (221% of the area in g). (i) Same ostium 3.67 
min after a return to control Ringer’s. The ostial area is 1450 pm2 (159% of the area in 
g)-
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Fig. 2.10. Individual ostia over time in Corbicula fluminea (a-c) and Toxolasma 
texasensis(d-f) live gills.
(a) Digitized video images of a C. fluminea ostium 1 min prior to treatment with 10~3 
acetylcholine. The ostial area is 11015 pm2, (b) Same ostium following 1 min of the 
treatment and the ostial area has been reduced to 8233 pm2 (75 % of the area in a), (c) 
Same ostium following 2.2 min of acetylcholine treatment. Ostial area is 3265 pm2 (30 
% of the area in a).
(d) Digitized video images of a T. texasensis ostium just prior to a spontaneous closure. 
Ostial area is 3200 pm2, (e) Same ostium 10 s later just following the closure (arrows 
denote ostial margin). The area has been reduced to 444 pm2 (14 % of the area in d). (f) 
Same ostium 30 s following d. Ostium has reopened to 2766 pm2 (86 % of that in d).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



32

Fig. 2.11. Changes in internal ostial areas from perfused gill tissues.
(a) Ostium receiving continuous Ringer’s without transmitter. Overall, ostial area is 
stable but does vary over time. The movements demonstrated by this ostium are typical 
of what we observe in control ostia.
(b) Ostium receiving continuous Ringer’s without transmitter that was observed to pulsate 
with a sphincter-like contraction. This ostium’s movement is atypical but not unique.
(c-e) Responses in ostial area following the application of exogenous transmitters at a 
concentration of 10'6 M. In each case, “on” arrows indicate initiation of perfusion with 
the transmitter-containing Ringer’s solution and “off” arrows indicate a return to control 
Ringer’s solution, (c) Average changes in two adjacent ostia in response to serotonin 
application, (d) Average changes in three adjacent ostia in response to acetylcholine 
application, (e) Average changes in two adjacent ostia in response to FMRFamide 
application. In each case, the net changes appear to be a result of the response to the 
applied transmitter and to the endogenous movements of the gill.
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the epithelial cells of the gill. While neither of these groups is paired with antagonistic 

muscles, the anatomical relationship between the main supportive connective tissue 

elements of the gill and the musculature suggests a functional antagonism. In the absence 

of contraction, the dense interfilament cross-stmts serve a mechanical function in keeping 

the gill filaments apart. During contraction, the interfilament muscle bands pull the 

filaments together in the concertina-like motion described for many bivalve gills (Setna 

1930; Elsey 1935; Atkins 1943; J0rgensen 1976). Additionally, the contraction of the 

fibers surrounding the internal ostia act to close the ostia in a sphincter-like manner.

Elsey (1935) first suggested an antagonistic relationship between the muscles and 

connective tissue skeleton in the bivalve gill. Elsey reported that the cross-stmts of 

Ostrea lurida and O. gigas are straight when muscles are relaxed but become bent as the 

muscles contract and draw the filaments together. My own observations are consistent 

with this assessment (Fig. 2.3). Intrinsic gill muscles in unionid bivalves have recently 

been described for Ligumia subrostrata and Anodonta grandis (Kaysetal. 1990; 

Gardiner et al. 1991). In these species, muscle bands mn perpendicular to gill filaments 

and insert onto calcified (chitinous) rods. Other muscles are associated with the water 

canals connecting the outside of the gill with the central water channel. Gardiner et al.

(1991) concluded that the muscular elements in these unionids were antagonized by the 

connective tissue skeleton.

Ridewood (1903) and Elsey (1935) both described the chitinous skeleton of 

bivalves as elastic and resistant in nature. Our experience with the connective tissue 

skeleton of D. polymorpha is consistent with these descriptions. While the connective 

tissue support of gill filaments has often been termed chitinous, preliminary data indicate 

that this connective tissue is similar to other connective tissues in that they contain 

collagen fibers embedded in a ground substance (see Chapter 3). The individual fibrils 

from which larger vertebrate collagen fibers are composed are on the order of 20 to 200
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nm in diameter, but those composing the reticular fibers of vertebrate connective tissue 

can be similar in size to those seen here (Kelley et al. 1984).

Experiments with whole demibranchs show that as muscles contract the 

demibranch shortens mainly in an anterio-posterior direction, thereby decreasing the 

demibranch area (Fig. 2.6). This reduction proceeds in a dose-dependent manner with 

either acetylcholine or FMRFamide application (Fig. 2.7). Since the degree of muscle 

activation is a function of intracellular calcium concentration (Ruegg 1986), it is likely that 

the differing levels of contraction are correlated with the amount of calcium entering the 

muscle. Preliminary experiments with calcium-free Ringer’s solutions suggest that 

external calcium is required for muscle contraction to proceed. This dependence on 

external calcium is not surprising given the small size of these fibers and the apparent lack 

of a developed intracellular membrane system (Fig. 2.4 b, d). These changes in whole 

demibranch area are consistent with contraction of the muscle fibers in connective tissue- 

associated bands that run across the base of the filaments at right angles.

Observation of the water channel epithelium and internal ostia also reveals 

consistent responses to exogenous transmitter application. Changes in ostial dimension 

in response to acetylcholine, FMRFamide, and serotonin are rapid and reversible (Fig.

2.11). Acetylcholine and FMRFamide both cause ostial area to diminish. Serotonin 

generally causes the ostia to open more widely. Apparently, acetylcholine and 

FMRFamide cause the muscle fibers to contract while serotonin causes the muscle fibers 

to relax. While the experimental examination of the serotonin effect was not statistically 

significant, the response to serotonin in many cases is dramatic and compelling (Figs. 

2.9g-i and 2.1 lc). Elsey (1935) observed dramatic changes in the ostial dimensions of 

the actively functioning gills of O. lurida and Gardiner et al. (1991) demonstrated 

significant increases in ostial dimensions of Ligumia subrostrata following serotonin
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( 10‘5 M) application. Further work is needed to understand which transmitters are 

physiologically important for direct muscular control.

Recent in vivo observations have documented the apparent muscular control of 

gill function. Tankersley (1996) made endoscopic observations from the suprabranchial 

chamber of the unionid Pyganodon cataracta and found that the internal ostia were more 

visible and less constricted during active water pumping. These results were interpreted 

to be consistent with the muscular control of ostia reported by Gardiner et al. (1991). The 

rhythmic expansion and contraction of the gills of P. cataracta have also been observed 

and were believed to be a result of cardiac rhythm and subsequent blood movement or to 

the muscular activity of water canals and ostia (Tankersley and Dimock 1993).

Endoscopic observations made on Placopecten magellanicus found that concertina-like 

movements of the gill are important in regulating ingestion volume (Beninger et al. 1992). 

Ward et al. (1994) observed movements in Crassostrea virginica including expansion and 

contraction of the plicae caused by movements of the ordinary filaments. Observations 

through the transparent shell of small Dreissena polymorpha by Sprung and Rose (1988) 

found gill expansion following shell opening.

The size of the passageways for water flow are important parameters for bivalve 

gill function. Models of the bivalve gill have used fixed estimates of interfilament 

distance or ostial dimension to determine other values like pump capacity and 

interfilament flow velocity (Foster-Smith 1976; Silvester and Sleigh 1984; Jprgensen et 

al. 1986; Jones et al. 1993). Our observations on D. polymorpha and those of other 

studies on oysters (Elsey 1935) and freshwater unionids (Gardiner et al. 1991) show 

that the interfilament distance and ostial dimensions are variable in nature and under 

muscular control. This study demonstrates that muscular alteration of the water 

passageways through the gill can be both rapid and dramatic in an excised gill
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preparation. The importance of muscle structure and function among bivalve phylogenies 

and gill types, as well as the extent of gill movements in vivo remain to be determined.
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The bivalve gill is a highly complex organ composed of regionally specialized 

epithelial tissue attached to a supportive structure of connective tissue, blood spaces, 

nerves, and muscles (LePennec et al. 1988; Kays et al. 1990; Gardiner et al. 1991; Eble 

and Scro 1996; Gros et al. 1996; Medler and Silverman 1997). The gill is an important 

organ involved in nutrition, ion transport, and gas exchange (Dietz 1985; Pearse et al. 

1987; LePennec et al. 1988; Kays et al. 1990; Eble and Scro 1996). LePennec et al.

(1988) emphasized the need for detailed descriptions of the anatomy of littoral bivalve 

gills. Indeed, there are gaps in our knowledge of the non-epithelial components of the 

gill. This comparative study focuses on the composition of the connective tissue and 

muscle fibers in the freshwater bivalve gill.

The connective tissue of the bivalve gill has historically been termed chitinous 

(Ridewood 1903; Yonge 1926; Elsey 1935; Atkins 1943), although more contemporary 

work recognizes the tissues as being composed primarily of collagen and associated 

muscle fibers (LePennec et al. 1988; Kays et al. 1990; Eble and Scro 1996; Gros et al. 

1996; Medler and Silverman 1997). Nevertheless, there are no studies that have 

explicitly examined the nature of the collagen; the evidence that collagen is the fibrous 

protein supporting the gill has largely been anecdotal or preliminary (Brown 1952;

Ruddall 1955; LePennec 1988; Kays et al. 1990; Gros et al. 1996; Medler and Silverman 

1997). The intrinsic muscles of the bivalve gill were described many years ago (Setna 

1930; Elsey 1935; Atkins 1943) but have received little attention until recently (Gardiner 

et al. 1991; Medler and Silverman 1997). The ultrastructure of these muscle fibers is 

poorly known and has been described for only a single species (Medler and Silverman 

1997). In the present study, the fibrous structural material of the gill is identified and the 

associated muscle fibers are classified according to their comparative ultrastructure.

Gills of the freshwater bivalves Corbicula fluminea, Dreissena polymorpha, and 

Toxolasma texasensis were studied. C. fluminea and D. polymorpha are members of the
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subclass Heterodonta (Newell 1965) and share a common evolutionary lineage (Nuttall 

1990). Toxolasma texasensis is of the subclass Paleoheterodonta (Newell 1965) and is a 

member of the family Unionidae. As a group, the animals represent the majority of extant 

freshwater bivalves.

METHODS

Animals and maintenance

Dreissena polymorpha (Pallas 1771) were collected from western Lake Erie and 

from the Raisin and Huron Rivers in Michigan; and from the Mississippi River near 

Baton Rouge, Louisiana. Corbicula fluminea (Muller 1774) and Toxolasma texasensis 

(I. Lea 1857) were collected from ponds near Baton Rouge, Louisiana. The animals 

were maintained in artificial pondwater (0.5 mM NaCl, 0.4 mM CaCl2 , 0.2 mM 

NaHC03,0-05 mM KC1, and 0.2 mM MgCl2 ) in aerated aquaria under laboratory 

conditions of approximately 22 - 25° C.

Preparation of supportive tissues

The supportive elements of the gills were stripped of their epithelia using the 

method described by Medler and Silverman (1997). Briefly, gills were excised and 

placed into a calcium-free Ringer’s solution to loosen the dssue and mechanically agitated 

through a transfer pipette to remove the cells. This procedure was used to prepare tissues 

for periodic acid Schiff (PAS) staining, scanning electron microscopy (SEM), collagen 

isolation, and gill homogenization (see below).

Periodic acid Schiff (PAS) reactions

Supportive tissues were prepared as described above and split along the 

interlamellar septae into single lamellae. These lamellae were laid flat on glass slides and 

air dried. The whole lamellae were exposed to salivary amylase for 10 to 20 min and then 

stained with a standard PAS reaction, following the methods of Troyer (1980): lamellae 

were oxidized with 1% periodic acid for 10 min; tissues were rinsed in running tap water
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for 5 min and placed in Schiff s reagent (de Tomasi 1936) for 10 min; the stained 

lamellae were washed in three changes of 0.5% sodium metabisulfite for two min each 

and washed in running water for 5 min. Finally, the stained lamellae were dehydrated in 

a graded ethanol series and mounted with Permount. The prepared tissues were 

examined with a Nikon Microphot FXA light microscope using a green filter.

Preparation of gill sections

Prior to gill excision, hemolymph samples were taken from animals by inserting a 

26 gauge needle between the valves and into the pericardial space (Fyhn and Costlow 

1975; Dietz et al. 1994). Hemolymph osmolality (approximately 40-60 mOsm) was 

measured on a Precision Systems freezing-point osmometer. A 2% glutaraldehyde 

solution was adjusted with phosphate buffer to match the hemolymph osmolality.

Excised gills were cut along the filaments into strips about 3 mm wide and quickly fixed 

by immersion in the glutaraldehyde solution for 1 h. Gills were rinsed twice in phosphate 

buffer and post-fixed in 1% OsC>4 for I h, rinsed twice in phosphate buffer, and 

dehydrated in a graded ethanol series. Gill strips were embedded in LR White (London 

Resin Co.) medium grade resin by placing them in a 1:1 mixture of ethanol and resin for 

24 h. They were transferred to 100% resin for 12 h, and embedded flat in fresh resin at 

60° C for 24 to 48 h.

Gills were sectioned with a Reichert-Jung ultracut E ultramicrotome at 60-90 nm 

thickness with glass knives, or at 2 pm and stained with toluidine blue. The gills were 

sectioned in three planes: (1) in cross section transverse to gill filaments (2) in a dorso- 

ventral plane between adjacent filaments, and (3) in frontal sections (enface) across gill 

filaments. Thin sections were stained with 3% uranyl acetate for 8 min followed by 

Reynolds’ (1963) lead citrate for 2-5 min. Thick sections were examined with a Nikon 

Microphot FXA and thin sections with a JOEL 100CX transmission electron microscope 

(TEM) operating at 80 kV.
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Preparation of gills for SEM

The supportive structures of the gill were isolated and the whole structure was 

fixed with 2% glutaraldehyde and 1% OSO4  as described above. After osmication, gills 

were rinsed in phosphate buffer and dehydrated in a graded ethanol series. Gills were 

wrapped in lens paper, critical-point dried, and mounted on stubs. Specimens were 

sputter coated with a mixture of gold and palladium ( 2 0  nm) and viewed with a 

Cambridge S-260 SEM.

Collagen isolation

Collagen isolation followed a modified version of Murray et al. (1982) designed 

for the acid extraction of polychaete cuticle collagen. Gills were excised and stripped of 

their epithelium as described above. The remaining supportive tissues were stirred 

overnight at 4° C in a neutral salt solution containing protease inhibitors (0.05 M tris-HCl; 

1.0 M NaCl; 0.01 M N-ethylmaleimide (NEM); 0.025 M ethylenediaminetetraacetic acid 

(EDTA). The gills were homogenized with a hand-held glass homogenizer in 0.1 M 

acetic acid at 4° C and then extracted for at least 24 h in 0.1 M acetic acid at 4° C with 

stirring. Homogenates were centrifuged at 25,000 g for 30 min. The supernatant was 

collected and dialyzed against 3 to 4 changes of 20 mM Na2HPC>4 t which caused the 

collagen to precipitate. Precipitated collagen was collected by low speed centrifugation 

and freeze-dried. Dried collagen was suspended in deionized water at a concentration of 

1 mg/mL and frozen in 50 (J.L aliquots at -20° C.

Gill homogenization

Whole gill tissues were stripped of their epithelium as described above and 

homogenized in deionized water at approximately 25° C using a hand-held glass 

homogenizer. Suspensions (approximately 2 demibranchs/mL) were applied to grids and 

negatively stained (see below).
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Negative staining

Collagen isolates (1 mg/mL) or gill homogenates (approximately 2 

demibranchs/mL) were suspended in deionized water. Formvar-coated grids were floated 

on a drop of the suspension for 10 min. The grids were drained and allowed to air dry. 

3% uranyl acetate in 30% ethanol was dripped across the face of the grids and the grids 

were drained and allowed to air dry. The prepared grids were examined with a JOEL 

100CX transmission electron microscope operating at 80 kV.

Sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS PAGE)

Collagen proteins were electrophoresed at 20 V for about 12 h on 8% 

polyacrylamide gels (acrylamide: methylene bisacrylamide = 37:1) following a modified 

version of Murray et al. (1982). The running buffer consisted of 0.16 M tris-HCl; 1 % 

sodium dodecylsulfate; pH 6.6 with acetic acid. The sample buffer consisted of 0.05 M 

sodium phosphate buffer, pH 7.4; 20% (w/v) glycerol; 2% mercaptoethanol; 2% SDS; 

0.033% phenol red as tracking dye. Samples (50 |ig) were loaded on gels with Bovine 

Type I collagen (Sigma C-9879) and high molecular weight markers (Sigma M-3788) as 

standards. Gels were stained with 0.1% Coomassie Blue R-250 in a solution of 10% 

acetic acid and 25% isopropanol for 1 h, and destained with a solution of 10% acetic acid 

and 10% isopropanol for several h.

Microscopic measurements

All measurements were made from photographic prints to the nearest 0.01 mm 

with digital calipers. For the estimation of thick filament diameter, 500 thick filaments 

were measured from several different muscle fibers for each species. To estimate 

thinrthick filament ratios I counted filaments from several different regions of fibers from 

each of the three species.
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RESULTS

General organization of gill lamellae

The gills of all three species are homorhabdic and the general organization of the 

gill lamellae forming them is shown in Fig. 3.1. The gill filaments consist of regionally 

specialized epithelial cells attached to a fibrous connective tissue matrix. The connective 

tissue in the filaments is continuous with an outer connective tissue sheet at the base of 

the filaments. A second connective tissue sheet supporting the internal water channel 

epithelium is separated from the outer sheet by a hemocoel. The muscles of the gills are 

restricted to the subfilamentar tissue: in the two connective tissue sheets of the lamellae 

and m bands of connective tissue running perpendicular to the bases of the filaments.

The bands of muscle and connective tissue are antagonized by connective tissue cross- 

stmts more superficial to the muscle bands and perpendicular to the filaments.

While the general organization of the gills from the three species is similar, some 

important differences are noteworthy. The lamella of T. texasensis, like those of other 

unionids, have calcified concretions in the connective tissue sheets and calcified rods at 

the base of the filaments (Silverman et ai. 1983; Gardiner et al. 1991); these structures are 

absent in C. fluminea and D. polymorpha. The gills of T. texasensis are also generally 

thicker than in the other species, thus the water canals connecting to the central water 

channel are longer (on the order of 100 pm in T. texasensis versus about 20 pm in C. 

fluminea and D. polymorpha). The filaments in T. texasensis are alternate with the ostia 

(as in Fig. 3. lb), while in C. fluminea and D. polymorpha the external ostia are 

effectively divided into two by half of the filaments (as in Figs. 3.1c,d). The cross-stmts 

in C. fluminea and D. polymorpha have an elongate, figure-eight morphology, while 

those of T. texasensis are straight (not shown). The gills of C. fluminea are slightly 

plicate but those of T. texasensis and D. polymorpha are flat. Grossly, the gills of C. 

fluminea and D. polymorpha are more similar in structure.
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Fig 3.1. General organization of connective tissue and muscle in the gills of the bivalves 
studied.
(a) Transverse section through a single lamella of C. fluminea. The connective tissue 
fibers of the filament (f) merge into die connective tissue of the outer connective tissue 
sheet (1). This connective tissue sheet envelops muscle fibers (m), as does the inner 
connective tissue sheet (2). Between the two connective tissue sheets is a hemocoel (h) 
with various hemocytes (he). Epithelial tissue, including lateral ciliated cells (LC), cover 
the outside of the gill and water channel epithelium (WCE) lines the central water channel. 
TEM.
(b) Diagrammatic composite of the common supporting structure of the gills studied (not 
to scale). Dorso-ventral filaments are supported by a fibrous connective tissue structure 
(f) that merges into a flat connective tissue sheet (1). These filament supports are held 
apart by connective tissue cross-stmts (cs) that are superficial to bands of connective 
tissue and muscle fibers (B). A second connective tissue sheet (2) supports the water 
channel epithelium. Both sheets of connective tissue are interspersed by muscle fibers 
(wavy black lines). The space between the two connective tissue sheets comprises the 
hemocoel (h). Water moves through the gill by entering external ostia (e) and into water 
canals (arrow) which empty into the central water channel via internal ostia (i).
(c) External view of the supportive structure in the gill of D. polymorpha. The filament 
supports (f), cross-stmts (cs), outer connective tissue sheet (1), and external ostia (e) are 
shown. SEM.
(d) 2 (im en face section through a gill lamella of D. polymorpha showing the internal 
structure of Fig. 3.1c. Filament supports of varying density (f), cross-stmts (cs), 
muscle/connective tissue bands (B), and water canals (C) are visible. Light micrograph.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



47

Connective tissue

The supportive tissue of the gills (filament supports, cross-struts, and connective 

tissue sheets) was found to be PAS-positive in each of the three species (Fig. 3.2). 

Sections of the gills revealed that the connective tissue is composed of small fibrils 

approximately 15 nm in diameter and having an axial periodicity of about 10 nm (Figs. 

3.3a, c, d). In some regions, interfibrillar banding was observed with an axial periodicity 

of about 55 nm (Figs. 3.3c, d). In some dense regions such as the main support of the 

filaments, the banding pattern was obscured by a ground substance (not shown).

Collagen isolates were found to contain fibrils approximately 30 nm in diameter 

with an axial periodicity of about 20-30 nm (Figs. 3.3e-g). Many of these fibrils 

consisted of 2 or more individual fibrils, so the dimensions of individual fibrils were 

difficult to determine. The gill homogenates contained large fibers of up to about 150 nm 

in diameter with axial periodicities of approximately 55 nm (Figs 3.3h-j). These fibers 

display the “hole” and “overlap” zones seen in negatively stained vertebrate collagen 

fibers.

SDS PAGE of collagen samples demonstrated protein bands that are consistent 

with the banding patterns of vertebrate collagens for all three bivalves (Fig. 3.4). The 

most prominent bands correspond to collagen alpha chains as inferred by the position of 

Type I collagen bands. Bands corresponding to gamma and beta chains were also 

observed but less prominent. The resolution was insufficient to make inferences about 

the alpha chain composition in these samples.

Muscle fibers

The muscle fibers in the gill are similar in each of the species (Fig. 3.5). They are 

smooth muscle fibers with a thin:thick contractile filament ratio of approximately 12:1.

The electron-dense bodies are generally peripherally placed, and occasionally observed in 

the internal part of the fiber with no apparent organization (Figs. 3.5a-c). The
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Fig. 3.2. P AS-stained connective tissue elements in the gills of (a) D. polymorpha, (b) 
C. fluminea, and (c) T. texasensis. All of the major connective tissue regions show a 
positive PAS reactivity including the filament supports (f), cross-struts (cs), and the 
connective tissue sheets that delineate ostia (O). Light micrograph.
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Fig. 3.3. Collagen fibrils (a-g) and fibers (h-j) from the gill tissue. TEM.
(a-d) Fibrils observed in sections of gill tissues of (a) D. polymorpha, (b,c) C. fluminea, 
and (d) T. texasensis. Axial banding patterns of about 10 nm are visible for each 
species. A very regular and tighdy packed arrangement of fibrils is demonstrated in the 
section from C. fluminea (b). An interfibrillar periodicity of about 55 nm (arrows) is 
visible in sections from C. fluminea (c) and T. texasensis (d).
(e-g) Negatively stained collagen fibrils isolated from (e) D. polymorpha, (f) C. 
fluminea, and (g) T. texasensis. Each of these samples contains fibrils that show a 
definite axial periodicity of about 20-30 nm (arrows) and are approximately 30 nm in 
diameter.
(h-j) Collagen fibers from homogenized gill tissues in (h) D. polymorpha, (i) C. 
fluminea, and (j) T. texasensis. These fibers are large (up to 150 nm diameter) and 
show an axial periodicity of approximately 55 nm (arrows). Alternating “hole” zones (h 
in figure) and “overlap” zones (o) characteristic of collagen are visible in each case.
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Fig. 3.4. SDS PAGE of collagen isolated from (a) D. polymorpha, (b) C. fluminea , 
and (c) T. texasensis. The values on the left show the molecular weights of standards in 
kDa. Those on the right mark the positions of gamma (1), beta (2), and alpha (3) chains 
inferred from the migration pattern of vertebrate Type 1 collagen. The alpha bands show 
up most prominently in each case, although other bands are faindy visible.
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Fig. 3.5. Sections of muscle fibers from (a,d) D. polymorpha, (b,e) C. fluminea, and 
(c,f) T. texasensis. TEM.
(a-c) Cross sections of muscle fibers from the three species. The muscle fibers show 
densely packed thick and thin filaments with dense bodies (open arrows), peripheral 
mitochondria (asterisks), scanty sarcoplasmic reticulum (black arrows), and microtubules 
(white arrows). The inset in (c) is an enlargement of the fiber to show the structure of 
microtubules.
(d-f) Longitudinal sections of muscle fibers from the three species. Muscle fibers are 
always surrounded by a connective tissue matrix (CT).
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cytoplasmic organelles and scanty sarcoplasmic reticulum are peripherally placed (Figs. 

3.5a, c, d, e), while microtubules are scattered throughout along the long axis of the 

muscle fibers (Figs. 3.5a-c, inset in c). In cross-section, the muscle fibers vary from 

ovate to elongate and are only a few microns in diameter. The thick contractile filament 

diameter in cross section is variable, with the three species having overlapping 

distributions (Fig. 3.6). The maximum filament diameter is approximately 40 nm in C. 

fluminea and 50 nm in D. polymorpha and T. texasensis and the minimum diameter is 

about 11 nm in each of the species.

DISCUSSION

The supportive skeleton of these freshwater bivalve gills is composed mainly of 

an extracellular matrix of collagen and associated PAS-oxidizable carbohydrates. These 

reactive carbohydrates probably represent both the glycosylated components of the 

collagen, a glycoprotein exhibiting varying degrees of glycosylation (Linsenmeyer 1981), 

and the ground substance in which the collagen is embedded. An abundance of smooth 

muscle fibers are present throughout this matrix, along with a variety of other cell types 

not described here. Overall, the composition and organization of these supportive 

structures are reminiscent of many molluscan organs where muscular systems are encased 

and embedded by connective tissue layers (Bairati 1985). A few examples of such 

organs include the bivalve mantle (Morrison 1996), palps (Morse and Zardus 1997), and 

neural sheath (De Biasi et al. 1985).

The collagen fibrils in situ are approximately 15 nm in diameter with an apparent 

axial periodicity of about 10 nm that may be part of a larger, unresolved 

pattern. The fibrils are similar in structure to other collagens reported for a number of 

different molluscan species (Bairati 1985). This similarity is not surprising given the wide 

distribution and long evolutionary history of collagens in general (Baccetti 1985;

Mathews 1985). Negatively stained collagen samples and gill homogenates also

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



53

150

100
T3
CD
£
03-QO
%

5 0

T f <30 CM CO O
r -  CM CM m CO CM CO O

Dp

QJ
Ti

• t -  CO 0 3  CO
i -  « - CM

C*. i-  Ww n  co 0 3  CO 
CO T f

1̂ to

thick filament diameter

Fig. 3.6. Distribution of thick contractile filament diameter in 4 nm groupings (n = 500). 
The thickest part of the filament is just over 50 nm in both D. polymorpha and T. 
texasensis, but is about 40 nm in C. fluminea. The minimum diameter is about 11 nm in 
each of the species and the mean diameters are 28 nm in D. polymorpha, 25 nm in C. 
fluminea, and 35 nm in T. texasensis.
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demonstrate axial banding patterns similar to one another and to those of collagens in 

general. While an axial periodicity of 64 nm (Gosline and Shadwick 1983; Kelley et al

1984) or 67 nm (Galloway 1985; Wolfe 1985) is often considered to be characteristic of 

collagen, the period is variable and dependent on tissue source, preparation, and tensile 

strength (Trelstad and Silver 1981). The periodicity of approximately 55 nm is 

reasonably close to that of other collagens, as is the banding pattern. As individual 

collagen molecules associate into larger fibers they are aligned end to end, with regular 

gaps left between sequential molecules. The molecules of adjacent rows are staggered 

and show regions of regular overlap where no gaps exist (Linsenmeyer 1981; Kelley et al 

1984 ; Wolfe 1985). The “hole” regions in the large fibers correspond to accumulated 

stain in the gaps between sequentially packed molecules, while the “overlap” regions are 

where stain is excluded by the overlapping molecules (Fig. 3.3h-j) (Linsenmeyer 1981; 

Wolfe 1985).

The appearance of the connective tissue fibers from the isolated samples and from 

the gill homogenates is consistent with collagen, but is not directly comparable to the 

fibrils in situ. Positive and negative staining patterns are determined by different 

molecular mechanisms and do not produce the same results (Katayama and Nonomura 

1979; Chapman 1985). Further, the large connective tissue fibers observed when the 

gills are homogenized in deionized water (Fig. 3.3h-j) have never been observed in situ 

and may be formed by reorganization of the smaller fibrils. Nevertheless, it is interesting 

that the interfibrillar banding patterns in situ have a correspondent periodicity of about 55 

nm (Fig. 3.3c,d).

The electrophoretic migration pattern of the collagen is consistent with the patterns 

shown by vertebrate collagens (Miller and Rhodes 1982). Collagens are formed from 

three intertwined alpha helices (alpha chains), with different collagens made of unique 

combinations of alpha chains (Miller and Gay 1982; Gosline and Shadwick 1983; Wolfe
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1985). Bands representing dimers (beta chains) and trimers (gamma chains) of alpha 

chains were sometimes resolved in our gels, but not as prominently as the alpha chains. 

Our resolution of individual bands was too low to make any interpretation about the 

number or types of alpha chains and further work is required to understand this level of 

molecular detail for these collagens.

The distribution of contractile thick filament diameter in the muscle fibers is 

consistent with filaments 40-50 nm in the middle, tapering to about 11 nm at the ends for 

each of the three species (Fig. 3.6). This type of tapered contractile thick filament is 

characteristic of other invertebrate smooth muscles (Sobieszek 1973; Castellani et al.

1983; Paniagua et al. 1996). Preliminary observations indicate that the muscle fibers are 

spindle shaped with a centrally placed nucleus, but the overall length and shape of the 

muscle fibers are largely hidden within the associated connective tissue and will probably 

require serial reconstruction to be fully revealed.

Although we have previously described the integral gill muscles in bivalves as 

obliquely striated (Kays et al. 1990; Gardiner et al. 1991; Medler and Silverman 1997), 

the differences between obliquely striated and invertebrate smooth muscles often follow a 

continuum (Morrison and Odense 1974; Paniagua et al. 1996). Based on the arrangement 

of the electron-dense bodies and on the appearance of the fibers in cross section, the 

fibers in all three species are more typical of molluscan smooth muscles. Obliquely 

striated muscles have sarcomeres aligned at a small angle with respect to the fiber long 

axis, as may be indicated by electron-dense body arrangement (Rosenbluth 1972; 

Paniagua et al. 1996). Cross sections of the fibers often contain distinct regions 

representing H bands, I bands, and A bands simultaneously (Rosenbluth 1972; Paniagua 

et al. 1996). The muscle fibers of the species studied here show no apparent organization 

between sarcomeres, as the electron-dense bodies are peripheral or occasionally inside the
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muscle with no clear organization. Cross sections of the muscles always contain both 

thick and thin filaments together and do not show organized sarcomeric zones.

These muscle fibers correspond to Matsuno’s (1987) invertebrate smooth muscle 

type B: peripherally-placed cytoplasmic organelles, thick filaments approximately 40 nm 

in diameter, disordered electron-dense bodies, and scanty sarcoplasmic reticulum. This 

type of muscle cell is found in other molluscan species as well as in echinoderms, 

coelenterates, and oligochaetes (Matsuno 1987; Paniagua et al. 1996). According to 

Matsuno (1987), these are the most prevalent muscles in the motile organs of molluscs 

and echinoderms where they provide body support and movement. The similarity in 

muscle type between the three bivalve species studied is interesting, given the significant 

differences in invertebrate muscle structure within (Morrison and Odense 1974; Matsuno 

1987; Matsuno 1988; Matsuno and Kuga 1989; Matsuno et al. 1993; Royuela et al. 1995) 

and between species (Morrison and Odense 1974; Matsuno 1987; Paniagua et al. 1996).

The gross organization of the gills follows a general pattern with some differences 

between species. Overall, more similarity exists between the most closely related 

animals, C. fluminea and D. polymorpha. Nevertheless, the gills of all three species are 

constructed from very similar collagenous material and smooth muscle, suggesting a 

conserved function. Early authors proposed that the integral gill muscles work in a 

coordinated fashion with the ciliated cells of the bivalve gill (Yonge 1926; Elsey 1935; 

Atkins 1943). We have recently demonstrated that the active gill musculature in unionid 

and dreissenid bivalves responds to neurotransmitters and is capable of altering the 

dimensions of the water passageways in excised gills (Gardiner et al. 1991; Medler and 

Silverman 1997). Similar movements have also been observed in the gills of C. fluminea 

and T. texasensis (Medler unpublished observations). The biological significance of the 

muscles and associated connective tissue may lay in the regulation of water flow through
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the gill (Gardiner et al. 1991; Tankersley 1996; Medler and Silverman 1997), but further 

study is needed to determine all of their functions.
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Dreissena polymorpha, the zebra mussel, is a relatively recent inhabitant of fresh 

water with records dating only to the Miocene (Nuttall 1990), as compared to the Triassic 

for the unionids (Haas 1969). Ionic tolerances described for D. polymorpha differ from 

the tolerances seen in the unionids. Zebra mussels do not survive in deionized water 

(Nichols 1993; Ram and Walker 1993; Dietz et al. 1994), while unionids survive for 

months under such conditions (Dietz et al. 1994). The rapid turnover of ions and the 

lack of ability to reduce ionic losses in a dilute medium are an indication of the incomplete 

adaptation to fresh water by D. polymorpha (Wilcox and Dietz 1995). Fischer et al.

(1991) found that relatively low levels of K+ were toxic to D. polymorpha and the

animals do not tolerate exposure to hypertonic NaCl challenges (Horohov et al. 1992).

Nevertheless, the presence of some K+ is essential to the animals and is important for

modulating the effects of elevated NaCl (Dietz et al. 1994; Dietz et al. 1996; Dietz et al.

1998; Wilcox and Dietz 1998). Finally, D. polymorpha has a Mg2+ requirement not

found in other freshwater bivalve species (Dietz et al. 1994).

While populations of D. polymorpha have been found inhabiting European 

estuaries with salinities as high as 12 ppt. (reviewed by Strayer and Smith 1993), the 

species exhibits a limited salinity tolerance (Wilcox and Dietz 1997) which is influenced 

by ambient temperature (Kilgour et al. 1994). Fong et al. (1995) found that reproductive 

events are depressed upon acute exposure to elevated salinities, but that this depression is 

significantly reversed after several days of acclimation. The epithelium in D. polymorpha 

is leaky by comparison with other freshwater bivalve species, showing significant 

paracellular solute exchange between the bathing medium and the blood (Dietz et al. 1995; 

Zheng and Dietz 1998). When D. polymorpha are exposed to dilute artificial sea water 

(ASW), they become isosmotic with the bathing medium (Wilcox and Dietz 1997) and 

experience increases in blood ions from the bath, namely Na+, Cl', K+, and Mg2+
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(Wilcox and Dietz 1997). Alteration of muscle function might be expected when these 

ions are elevated in the blood. For example, Horohov etal. (1992) and Wilcox and Dietz

(1995) hypothesized that imbalances in K+ lead to a disruption of the electrochemical 

potentials vital to excitable tissue function.

The lamellibranch gills of bivalve molluscs are important respiratory and feeding 

structures. The intrinsic gill muscles in some eulamellibranchs are oriented to control the 

dimensions and posture of the demibranchs, leading to a likely role in the control of water 

flow through the gill. We have recently studied the anatomy of the muscles and their 

responses to selected neurotransmitters in both unionid and dreissenid bivalves (Gardiner 

et al. 1991; Medler and Silverman 1997). Briefly, the muscles in D. polymorpha are 

arranged in two sets. One set is encased in connective tissue bands at the base of the gill 

filaments and is oriented so that contraction decreases interfilament distance; the second 

set is closely associated with the loose connective tissue sheets supporting the external 

and internal epithelial layers and is responsible for controlling the dimensions of the ostia 

and water canals of the gill (see Chapter 2). The muscle fibers are small (1-2 pm in 

diameter) and have only a rudimentary internal membrane system (Chapters 2 and 3; 

Medler and Silverman 1997). These morphological features suggest a reliance on 

external calcium for muscle activation. The first part of this study examines the

dependence of muscle activity on extracellular Ca2+, while the second examines the

effects of elevated Na+, Cl', K+’ and Mg2+ on muscle contraction in the gills of D. 

polymorpha.

METHODS 

Animal Maintenance

Dreissena polymorpha were collected from Lake Erie at the mouth of the Raisin 

River in Monroe, Michigan and from the Mississippi River near Plaquemine, Louisiana.
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The animals were maintained in artificial pondwater (see below) in aerated aquaria under 

laboratory conditions of approximately 22 - 24° C.

Solutions

Artificial pondwater (APW) in mM consisted of 0.5 NaCl, 0.4 CaCl2 , 0.2 

M gS04 , 0.2 NaHCC>3 , 0.05 KC1 (Dietz et al. 1994). Artificial seawater (ASW) in mM 

consisted of 449.1 NaCl, 27.5 M gS04, 24.4 MgCl2, 9.9 CaCl2, 6 . 6  KC1, 2.4 KHC03, 

0.8 KBr, 0.4 H3BO3 ; 1076 mOsm«kg-i total solute concentration; 35 ppt salinity

(Chambers and De Armendi, 1979; Wilcox and Dietz 1997). Ringer’s solution in mM 

was made of 5 NaCl, 5 CaCl2, 5 NaHCC>3 , 0.5 KC1, 5 NaS04, 0.5 MgCl2; 48 

mOsm»kg-i (Dietz et al., 1994). ‘Elevated’ Ringer’s consisted of the same components 

as the standard Ringer’s but with 45 NaCl, 2 KC1, and 5 MgS04 ; 130 mOsm«kg-i. 

Various experimental Ringer’s solutions were made by adjusting single components of 

both Ringer’s solutions. Three different Ca2+-free Ringer’s solutions were made as 

follows. One solution was made by omitting CaCl2  and including ImM EGTA. The 

difference in osmolality was corrected by the addition of NaCl. In two other cases, either 

MnCl2  or CoCl2 was substituted for CaCl2. In each of the Ca2+-free or ion-substituted

solutions, osmolality and pH were the same as in the Ringer’s solution.

Gill Preparation

Gills were excised into the appropriate Ringer’s solution by freeing the anterior 

and posterior connections of the gills with forceps and then gendy freeing the gills from 

along the body of the animal. Lateral and medial demibranchs from each side of an 

animal were separated by cutting the basal attachment with surgical scissors. Thus, each 

animal provided four demibranchs which were randomly distributed among treatment 

groups for all experiments. Lateral and medial demibranchs were considered to be the
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same physiologically. Randomly placing tissues from a single animal to each treatment 

group eliminated between animal differences as a factor in statistical analysis.

Demibranch Contraction Assay

We have previously described an in vitro assay designed to examine the response 

of intrinsic demibranch muscles to neurotransmitters (Chapter 2; Medler and Silverman 

1997). Demibranchs from animals were excised into a Ringer’s solution and after 30-45 

min of equilibration, the demibranchs were placed into a drop of Ringer’s solution on a 

glass slide. The gills were left in this position for about one min to ensure that the 

muscles of the demibranch had relaxed. The Ringer’s solution was gently aspirated to 

leave the demibranch spread flat across the slide. A solution containing 1 mM 

acetylcholine (ACH) in Ringer’s was quickly applied to the gill and immediately 

aspirated, leaving the demibranch flat on the slide. Acetylcholine is a dose-dependent 

stimulator of muscle contraction in the intrinsic gill muscles of D. polymorpha (Chapter 2; 

Medler and Silverman 1997), eliciting strong responses at concentrations near 1 mM . 

Over the next 1 to 2 min, the demibranch decreases in area as the intrinsic muscles 

contract. During this procedure, gills were video taped on VHS tape at a magnification of 

about 10X through a dissecting microscope. Digitized-video-images were analyzed with 

Image-1 computer software (Universal Imaging Corp). Gill area was measured prior to 

transmitter exposure and at timed intervals after transmitter application. This process 

represents tonic contraction and the reduction in gill area approaches an asymptote after 

about 1 min. The reduction in gill area (% of the initial area) after one min of contraction 

will be referred to as the ‘contractile response’.

It is crucial that the demibranchs start in a relaxed state, since a shrunken or 

contracted gill is limited in its ability to reduce its area any further. Preparations are 

uniform and demibranchs are readily flattened on the glass slides as described above. 

Resting demibranch surface areas (prior to addition of transmitter) were compared
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between treatment groups to ensure that shrinkage did not confound the contractile 

response.

Ca2+-free Experiments

Three experiments were conducted to examine the relationship between 

extracellular Ca2+ and muscle contraction. In one experiment, gills were excised into a

Ca2+-ffee solution containing ImM EGTA before exposure to the 1 mM ACH. After 1

min of ACH exposure without Ca2+, ImM ACH in the Ringer’s solution with Ca2+ was 

administered to the gills. Contractile responses for each solution were measured. In 

other experiments, the inorganic Ca2+ antagonists MnCl2 or C0 CI2 were substituted for 

CaCl2  in the Ringer’s solution, while control gills were placed in ‘normal’ Ringer’s 

solution. Complementary experiments were also performed in which gills exposed to the 

antagonists were returned to Ringer’s with Ca2+ to examine whether the response was 

reversible. In each of the experiments, the contractile responses were compared with a 

t-test (n = 10 demibranchs per treatment group).

Artificial Sea Water Experiment

A group of about 30 animals were transferred to 15% artificial seawater (ASW) 

diluted with artificial pond water (APW) in two salinity steps over four days. Between 

80 and 90 percent of these animals survived the transfer and remained alive throughout 

the experiment. A second group of animals remained in APW. The gills from animals in 

each of these acclimation regimes were dissected as described above and placed in either 

‘elevated’ Ringer’s or Ringer’s solution. Thus, the experiment had a 2 X 2 factorial 

treatment arrangement with one factor being the water to which the animals were 

acclimated (15% ASW or APW), a second being the Ringer’s solution to which the
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excised gill was exposed (‘elevated’ Ringer’s or Ringer’s). The contractile response was 

measured for each treatment group (n = 20 demibranchs per treatment group).

MgS0 4  Experiment

The effect of MgSC>4 on demibranch muscle contraction was examined with both 

Ringer’s solutions. The four excised demibranchs from 10 APW-acclimated animals 

were distributed to the Ringer’s solution or to the ‘elevated’ Ringer’s solution with either 

0.5 mM MgSC>4 or 5 mM MgSC>4 . Thus, the experiment had a 2 X 2 factorial treatment 

arrangement, with one factor being MgSC>4 concentration (0.5 mM or 5.0 mM) and the 

second being the Ringer’s solution (‘normal’ or ‘elevated’). The contractile response was 

measured for each of the demibranchs (n = 10 demibranchs per treatment group).

KC1 Experiments

The effects of KC1 concentration on muscle contraction in the ‘elevated’ Ringer’s 

solution were examined in a set of four experiments, with a different NaCl concentration 

in each experiment (2, 10, 15,45 mM). The experimental design was to vary KC1 

concentration (0, 1,2,4 mM) while holding NaCl concentration constant for each 

experiment. All other ions were equal in concentration to those in the ‘elevated’ Ringer’s 

solution. In each experiment, the four demibranchs from 10 APW-acclimated animals 

were distributed to one of the four KC1 concentrations for about 40 min. The 

demibranchs were exposed to ImM ACH in the contraction assay and the contractile 

responses were measured (n = 10 demibranchs per treatment group).

NaCl Experiments

The effect of NaCl concentration in the ‘elevated’ Ringer’s solution was directly 

examined in two experiments with different KC1 concentrations (0 or 2 mM). In both 

experiments, the four demibranchs from each of 10 APW-acclimated animals were 

distributed to ‘elevated’ Ringer’s solutions containing one of four NaCl concentrations
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(2, 15, 30, or 45 mM) for about 40 min. Therefore, these experiments were the 

reciprocal of the KC1 experiments: NaCl concentration was variable while KC1 

concentration was held constant. The contractile response from each experiment was 

plotted and simple linear regression was used to determine whether the response changed 

as a function of the NaCl concentration (n = 10 demibranchs per treatment group). 

Ouabain Experiment

The role of the Na+/K+ ATPase on the ability of demibranch muscles to recover 

from an acute exposure to ‘elevated’ Ringer’s solution with no KC1 was examined. The 

cardiac glycoside, ouabain, was used to block Na+/K+ ATPase activity and KC1 was 

provided to some of the demibranchs following the acute exposure. The demibranchs 

from 10 APW-acclimated animals were excised and placed into ‘elevated’ Ringer’s 

solution without K+ for 25 and 30 min. After this incubation, the demibranchs were 

distributed to an ‘elevated’ Ringer’s solution containing either 0 or 2 mM KC1. 

Additionally, each Ringer’s solution contained either 0 or 1 mM ouabain. Thus, the 

experiment had a 2 X 2 factorial treatment arrangement with one factor being the 

presence or absence of KC1, the second being the presence or absence of ouabain. After 

about 40 min in these solutions, the demibranchs were exposed to 1 mM ACH in the 

demibranch contraction assay and the contractile responses were recorded (n = 10 

demibranchs per treatment group).

Statistics

In most experiments, the contractile response was compared between treatment 

groups with an ANOVA. A Tukey post-ANOVA test was then used to make pair-wise 

comparisons between individual treatment means (experiment-wise error rate = 0.05 in all 

experiments). In the NaCl experiment, a simple linear regression was used to test 

whether the contractile response changed as a function of NaCl concentration.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



66

Frequency histograms of the data and of the residuals demonstrated normality of the data 

distribution, therefore no further transformation was required. Variances were 

homogeneous between treatment groups. All statistics were performed with SAS version 

6.10 (SAS Institute, Cary, N.C.).

RESULTS

Ca2+-free Experiments

In each of the three individual experiments, the gills in the Ca2+-free or ion- 

substituted solutions failed to contract when exposed to 1 mM ACH, while the control 

groups contracted normally (p < 0.0001 for each experiment) (Fig. 4.1). Demibranchs 

exposed to MnCl2 or C0 CI2 solutions rapidly regain their contractile activity when 

returned to the Ringer’s solution with Ca2+ (experiments not shown).

Artificial Seawater Experiment

The gills of animals acclimated to 15% ASW showed the same level of muscle 

contraction when stimulated by 1 mM ACH in both ‘elevated’ Ringer’s and Ringer’s 

solutions (Fig. 4.2). These responses were the same as those of the APW-acclimated 

gills stimulated with 1 mM ACH in Ringer’s. The gills from APW-acclimated animals 

exposed to ‘elevated’ Ringer’s solution showed a significant (p < 0.0003) depression in 

the ACH-stimulated contractile response when compared with the other treatment groups 

(Fig. 4.2).

MgS0 4  Experiment

The concentration of MgSC>4 (0.5 vs. 5 mM) had no effect on the degree of ACH- 

induced contraction in either Ringer’s solution (p < 0.591) (Fig. 4.3). The gills in the 

‘elevated’ Ringer’s solution did contract less than those in the Ringer’s solution (p < 

0.012). This depression is consistent with the results of the ASW experiment (Fig. 4.2).
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Fig. 4.1. Three independent experiments, each shaded with a different pattern, 
demonstrating the effect of extracellular Ca2+ on muscle contraction. In one experiment, 
demibranchs were bathed in Ca2+-free Ringer’s solution containing ImM EGTA (Ca++- 
free). In the second and third experiments, the CaCl2  in the Ringer’s solution was
replaced by the Ca2+ antagonists C0 CI2 (Co++) and MnCh (Mn++), respectively. In each
of the three experiments, the demibranchs with Ca2+ available in the Ringer’s solution
(Ca++) contracted significantly more than those without Ca2+ (Ca^-free, Co++, Mn++). 
(*** p < 0.0001; mean ± se, n=10).
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Fig. 4.2. Contractile responses of gills acclimated to 15% ASW (15%) or to APW (apw) 
and exposed acutely to Ringer’s (normal) or to ‘elevated’ Ringer’s (elevated). The APW- 
acclimated animals acutely exposed to ‘elevated’ Ringer’s solution show depressed 
contractile activity as compared with the other treatment groups. The 15% ASW 
acclimated-animals had the same level of demibranch contraction as the APW-acclimated 
animals in Ringer’s. Contractile responses with the same letter are not significantly 
different from one another when compared by a Tukey post-ANOVA test, (mean ± se, 
n=20).
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Fig. 4.3. Contractile responses of gills in Ringer’s (normal or ‘elevated’) with different 
concentrations of MgSO* The high concentration of MgSC>4 was 5.0 mM, while the low 
concentration was 0.5 mM. MgSC>4 concentration did not have a significant effect on 
muscle contraction. The demibranchs in the ‘elevated’ Ringer’s solution contracted 
significantly less than those in the Ringer’s solution (p < 0.012). The contractile 
responses with the same letter are not significantly different from one another when 
compared by a Tukey post-ANOVA test, (mean ± se, n=10).
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KC1 Experiments

The effects of KC1 concentration on ACH-induced contraction in APW-acclimated 

mussel gills were examined in four independent experiments, each with four different 

NaCl concentrations in the ‘elevated’ Ringer’s solution. Maximum contraction 

corresponded to either 1 or 2 mM KC1 in each of the experiments (Fig. 4.4).

Comparison across the four experiments suggests that when KC1 is absent from the 

Ringer’s solution, contraction decreases as a function of increasing NaCl concentration. 

NaCl Experiments

The effects of NaCl concentration on ACH-induced contraction in APW- 

acclimated mussel gills were examined in two experiments with either 0 mM or 2 mM 

KC1 in the ‘elevated’ Ringer’s. Contraction of the demibranch muscles significantly 

decreased as a function of increasing NaCl concentration when the KC1 concentration was 

0 mM (p < 0.0001, r2 = 0.36). However, when 2mM KC1 was present the contractile 

response did not change with increasing NaCl concentration (p < 0.655, r2 = 0.006)

(Fig. 4.5).

Ouabain Experiment

The effect of ouabain on ACH-induced muscle contraction was examined in both 

the presence and absence of KC1 following an acute 25-30 min incubation in ‘elevated’ 

Ringer’s without KC1. The interaction effect between ouabain and KC1 was significant 

(p < 0.0039), with 2 mM KC1 alone showing significantly greater contraction than the 

other treatments groups (Fig. 4.6). The mean response of the treatment group with KC1 

alone was over three times larger than the mean response when KC1 was present with 

ouabain and over 1.5 times greater than the response of the group with neither KC1 nor 

ouabain added. The main effect of ouabain was significant (p < 0.0001), but this effect is 

difficult to interpret since the interaction of ouabain and KC1 was significant.
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Fig. 4.4. Contractile responses of gills for the four independent KC1 experiments, each at 
a different NaCl concentration indicated by a different shading pattern. The greatest 
degree of muscle contraction corresponds to either 1 or 2 mM KC1 in each experiment. 
The contractile responses with the same letter within an experiment are not significantly 
different from one another when compared by a Tukey post-ANOVA test, (mean ± se, 
n=10).
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Fig. 4.5. Contractile responses as a function of increasing NaCl concentration in the 
‘elevated’ Ringer’s solution with either 0 mM or 2 mM KC1. When no KC1 was present 
in the solution, contraction significantly decreased as a function of increasing NaCl 
concentration. When 2 mM KC1 was provided, no such reduction was found, (mean ± 
se, n=10).
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Fig. 4.6. Contractile responses of demibranchs treated with ouabain (0 or 1 mM) and/or 
KC1 (0 or 2 mM). Gills were acutely exposed to ‘elevated’ Ringer’s without KC1. After 
25 to 30 min, demibranchs were distributed to treatment groups and allowed to recover 
for about 40 min. Treatment groups are ‘elevated’ Ringer’s with (K+) or without (no K>) 
KC1 and with (ou) or without (no ou) ouabain. When K+ was present without ouabain, 
the greatest level of muscle contraction was measured. However, adding ouabain caused 
a significant reduction of this response. Contractile responses with the same letter are not 
significantly different from one another when compared by a Tukey post-ANOVA test, 
(mean ± se, n=10).
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DISCUSSION

The gill muscles of D. polymorpha are dependent on external calcium for ACH- 

induced muscle contraction. Removing Ca2+ from the Ringer’s solution or blocking the

effects of Ca2+ with inorganic Ca2+ antagonists (Co2+ or Mn2+) prevents muscle 

contraction. The small size of the fibers and their lack of a well-developed internal Ca2+ 

storage system (Chapters 2 and 3; Medler and Silverman 1997) are consistent with these 

findings. Other molluscan muscle fibers also depend on external Ca2+ sources for

activation, for example the odontophore protractor of Busycon canaliculatum (Huddart et 

al. 1992) and the anterior byssus retractor muscle of Mytilus edulis (Miyahara et al.

1993). Mg2+ did not affect muscle contraction at the concentrations examined here.

The proper balance between NaCl and K+ is essential to normal muscle 

contraction in the gill of D. polymorpha. This study shows that K+ must be present at 

concentrations of 1 to 2 mM in order to support normal contraction. When exposed to 

elevated NaCl concentrations, the presence of K+ ions becomes even more critical for the 

maintenance of contractility. Consistent with these findings, whole animals cannot 

survive beyond a few days when exposed to 45 mM NaCl challenge with 0.05 mM K+

present in the pond water (Horohov et al. 1992; Dietz et al. 1996) and a hyperosmotic 

stress similar to an acute exposure to 15% ASW results in epithelial cell shrinkage within 

min (Dietz et al. 1998). The movement of K+ and other inorganic ions between

intracellular and extracellular pools can be an important mechanism in volume regulation 

in response to osmotic stresses both in invertebrates (Pierce 1982; Gilles 1987; Dietz et 

al. 1998) and vertebrates (Hoffmann 1987; Hoffmann and Dunham 1995). Furthermore,
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K+ transport in E. coli has been particularly well studied, where it also plays a critical role 

in osmoregulation (Epstein and Laimins 1980; Epstein 1986).

Often during hypoosmotic volume regulation (the case most studied in 

invertebrates), K+ efflux from intracellular compartments appears to be a response to

reduce swelling during the initial phase of exposure (within min), while changes in the 

concentration of organic effector molecules such as free amino acids are thought 

important for volume regulation over a longer readjustment period (within h) (Gilles 

1987). While inorganic ion movement is often passive (Gilles 1987), active transport is 

also important for maintaining ion balance. For example, Na+/K+ ATPase activity is 

involved in the recovery of neural tissues from osmotic or ionic imbalances in polychaetes 

(Benson and Treheme 1978) and in bivalves (Treheme et al. 1969; Willmer 1978c). In

addition, the activity of a ouabain-sensitive sarcolemmal Na+/K+ ATPase has been linked

to fatigue resistance in vertebrate skeletal muscle, where cellular extrusion of K+ and

accumulation of Na+ is a contributor to fatigue (Clausen 1996; Nielsen and Overgaard

1996). My results demonstrate that the recovery of muscle contractility following acute

osmotic stress in D. polymorpha is ouabain-sensitive. The exchange of K+ and Na+ in the

gill muscles of D. polymorpha during hyperosmotic/ionic stress is probably important for 

cellular osmoregulation and maintenance of an electrical potential by increasing

intracellular K+ while extruding Na+. Under similar osmotic stress, it has been

demonstrated that ouabain-sensitive processes are essential for short-term volume 

regulation in the gill epithelia of D. polymorpha (Dietz et al. 1997).

Osmoconforming animals show continued cellular function over a wide range of 

ion concentrations. Mytilus edulis can acclimate to between 25% and 125% sea water 

with ionic and osmotic conformity (Willmer 1978a). The nervous tissue from these
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animals continues to produce full-sized action potentials after acclimation to 25% sea 

water (Willmer 1978b). Isolated ventricle strips from three bivalve species continue to 

function over a wide range of salinities: good contractile activity was found over a range 

of 40-160% sea water in Mytilus edulis, 70-120% sea water in Ostrea edulis, and 2-24% 

sea water in Anodonta cygnea (Pilgrim 1953a). Whole animals exhibited an even greater 

ability to survive salinity changes (Pilgrim 1953a) and showed continued ciliary activity 

over a wide range of salinities (Pilgrim 1953b).

Despite extreme changes in the ionic composition of the bathing medium, the ionic 

basis of excitability appears to be the conventional mechanism based on Na+ and K+ 

distribution in invertebrates such as annelids (Carlson and Treheme 1977; Nicholls and 

Kuffler 1964), snails (Brezden and Gardner 1984; Dorsett and Evans 1989) and bivalves 

(Treheme et al. 1969; Shigeto 1970; Kidokoro et al. 1974; Willmer 1978b,c). The

results of the present study support the necessity for a proper balance between Na+, K+,

and an absolute requirement for Ca2+ to maintain normal gill muscle function in D. 

polymorpha. Whether impaired volume regulation, electro-chemical imbalance, or both 

are involved in the depression of muscle activity remains to be determined. We cannot 

separate electrochemical effects on the muscle from osmotic effects since we have not 

measured membrane potentials. The muscle fibers in the gill of D. polymorpha that are 

responsible for the contractility reported here are small (1-2 pm in diameter) and encased 

within a connective tissue matrix (Chapter 2; Medler and Silverman 1997), making 

electrical recordings elusive to date.

D. polymorpha belongs to the bivalve subclass Heterodonta, which contains 

many brackish water species. A number of these animals are less well adapted to 

freshwater than, for example, members of the subclass Paleoheterodonta, to which the 

unionids belong (Deaton and Greenberg 1991). Indeed, Dreissena polymorpha is a
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freshwater bivalve that shows a marked intolerance for deionized water (Nichols 1993, 

Ram and Walker 1993, Dietz et al. 1994). Wilcox and Dietz (1995) suggested that D. 

polymorpha is incompletely adapted to fresh water as indicated by the rapid ion turnover 

and an inability to reduce ion loss in dilute fresh water. The present study demonstrates 

that APW-acclimated animals have depressed muscle contractility when acutely 

transferred to ‘elevated’ Ringer’s solution but that animals acclimated to 15% ASW in 

steps over a few days have normal levels of muscle function.

Wilcox and Dietz (1998) concluded that D. polymorpha is a freshwater species in 

transition from a brackish water ancestry and still has some ability to tolerate oligohaline 

habitats. However, they also found that the animals could not tolerate large or rapid 

salinity fluctuations. One factor contributing to the animals’ inability to tolerate these 

fluctuations may be a transient loss of normal muscle function that accompanies such 

changes. We have demonstrated that ion imbalances can alter normal muscle function in 

the gills and it is likely that other muscles such as the heart may be adversely affected as 

well.
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The filtration rate of many bivalves is directly related to the total gill area 

(Meyhofer 1985; Jones et al. 1992; Lei et al. 1996) and some level of plasticity in the 

relative size of the gill is apparently related to environmental factors (Thiesen 1982; Franz 

1993; Payne et al. 1995). Different groups of bivalves exhibit varying abilities to clear 

bacterial-sized particles from their environment (Mphlenberg and Riisgard 1978; 

Silverman et al. 1995; Silverman et al. 1997). These differences are probably due to 

differences in the structure of the Iatero-ffontal cirri of the gill (Moore 1971; Owen and 

McCrae 1976; Silverman et al. 1996a,b), but some differences may be caused by 

differences in the relative dimensions of the gills (Silverman et al. 1997).

In addition to ciliary structure and relative gill size, the ostial area available for 

water flow across the gill may have an important influence on filtration rate (Foster-Smith 

1975, 1976; Jones et al. 1993). Ostial dimensions are variable over time (Elsey 1935; 

Nelson and Allison 1940; Foster-Smith 1976; Jprgensen 1990; Gardiner et al. 1991a; 

Tankersley 1996; Medler and Silverman 1997) and may be related to water-flow 

regulation. As glochidia develop in the water channels of unionids, there is a shut down 

of ostial water flow in the posterior portion of the gills. This represents the extreme case 

where gill musculature presumably regulates water flow through ostia (Richard et al. 

1991).

This chapter examines live gill area as a function of dry body mass and the 

dimensions of the internal ostia in the freshwater bivalves, Dreissena polymorpha, 

Corbicula fluminea, and Toxolasma texasensis. Previous studies using these species 

have shown significant differences in the ability to filter bacterial-sized particles 

(Silverman et al. 1995; Silverman et al. 1997) with D. polymorpha having the highest 

clearance rates, followed by C. fluminea and T. texasensis, respectively. While these 

differences were related to differences in the structure of Iatero-ffontal cirri, differences in
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relative gill size or ostial area or both could also contribute to the differences observed in 

clearance between the three species.

METHODS

Animals and maintenance

Dreissena polymorpha (Pallas 1771) were collected from western Lake Erie and 

from the Raisin and Huron Rivers in Michigan; and from the Mississippi River near 

Baton Rouge, Louisiana. Corbicula fluminea (Muller 1774) and Toxolasma texasensis 

(I. Lea 1857) were collected from ponds near Baton Rouge, Louisiana. The animals 

were maintained in artificial pondwater (0.5 mM NaCl, 0.4 mM CaCl2, 0.2 mM 

NaHC03, 0.05 mM KC1, and 0.2 mM MgCl2) in aerated aquaria under laboratory 

conditions of approximately 22 - 25° C.

Measurement of gill dimensions

Excised gills were placed in Ringer’s solution diluted to 70% with deionized 

water. The undiluted solutions contained 5 mM NaCl, 5 mM CaCl2, 5 mM NaHC03,

0.5 mM KC1, 5 mM NaS04, 0.5 mM MgCl2; 48 mOsm. Calcium-free Ringer’s used in 

various experiments had the same composition as the above solution except that the CaCl2 

was omitted and 4 mM EDTA was added. The osmolality and pH were the same in both 

solutions. For C. fluminea and D. polymorpha, gills were placed in the Ca2+-free 

Ringer’s to induce muscle relaxation. Presumably because of extensive calcium 

concretions and rods in the gills of T. texasensis (Silverman et al. 1983; Silverman et al. 

1985; Silverman et al. 1987), the same solution did not fully inhibit muscular contraction 

in this species. Thus, 10"4 M serotonin was used to relax the muscles in the gills of these 

animals (Gardiner et al. 1991a,b). To induce muscle contraction, gills were exposed to 

10~3 M acetylcholine (ACH) in C. fluminea and D. polymorpha. The gills of T. 

texasensis appear to be insensitive to ACH. However, they will contract when placed in 

a low pH environment, or if they are lightly stretched in an anterio-posterior direction.
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The gills of T. Texasensis were thus placed in a Ringer’s solution of pH 4 and 

mechanically stretched with forceps prior to measurements in order to elicit a contractile 

response.

The demibranchs from one side of each animal were placed in a solution to induce 

muscular contraction, while the gills from the other side were placed in a solution to cause 

relaxation. After 5 minutes in the appropriate solution, gills were laid flat on a 

microscope slide and photographed. The printed photographs were used to measure gill 

surface area (mm2) using Image I software.

After the photographs had been taken, the gills were returned to Ringer’s solution 

without ACH or acidic pH and split into single lamellae along the interlamellar septae.

The single lamellae were returned to the appropriate treatment solution and the water 

channel side of the gill was viewed at a magnification of 200X using either differential 

interference contrast (DIC) or darkfield optics on a Nikon Microphot FXA in the 

Socolofsky Microscopy Facility at Louisiana State University. The regions selected for 

examination were from the central portion of the gill and represented undamaged tissue 

within a single focal plane. The percentage of the water channel epithelial surface 

interrupted by ostia was estimated from high contrast photographic prints using point- 

count stereology (Weibel 1979).

Analysis of gill dimensions

Soft tissue was excised and dried overnight at 90° C for shell-free dry mass 

determination. Relaxed gill surface areas (mm2) were plotted as a function of dry mass 

(mg) and a regression was made through the data with a line having the form: Y = bXm, 

where b is the elevation of the line and m is the slope. Internal ostial areas from the 

relaxed and contracted gills of the three species were compared by a 2 X 3 factorial with 

one factor being the state of contraction (relaxed or contracted) and the second factor 

being the species. Individual factor means were compared with a Bonferroni/Dunn post-
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ANOVA test (experiment-wise error rate = 0.05). The relative contracted gill areas (% of 

relaxed gill area) were compared among the three species by a one-way ANOVA and 

individual means were compared with a Tukey post-ANOVA test (experiment-wise error 

rate = 0.05). Data were normally distributed and the variances were homogeneous. 

Therefore, the data fit the assumptions of the statistical models and no transformations 

were performed.

RESULTS

The slopes and intercepts of the regression lines for live gill area plotted as a 

function of dry body mass were not significantly different among the species. Therefore, 

a common regression line was used for all three species together: area (mm2) = 63.396 • 

dry tissue mass (mg)0-450 (Fig. 5.1). The contracted gill ostial areas were always 

significantly smaller than the corresponding relaxed gills (p < 0.0001) (Fig. 5.2). The 

effect of species was also significant (p < 0.002) with C. fluminea having significandy 

more osdal area than the other two species (Fig. 5.2). The interacdon effect was not 

significant (p < 0.543). The rank order of contracted gill area (% relaxed area) was: D. 

polymorpha (60%) > C. fluminea (75%) > T. texasensis (95%) (Fig. 5.3). 

DISCUSSION

The relative size of the gill appears to be the same in each of these species, despite 

differences in phylogeny and gross gill organization. Gill surface area scales as a 

common function of dry tissue mass in all three species (Fig. 5.1). In fact, this 

relationship is remarkably similar to the scaling of the filibranch gill in the marine bivalve, 

Mytilus edulis (Fig 1, broken line from Jones et al. 1993). A number of studies have 

demonstrated that water pumping rate, measured directly or indirectly, is a direct function 

of total gill surface area (Meyhofer 1985; Jones et al. 1992; Lei et al. 1996) or total ostial 

area (Foster-Smith 1975, 1976). Kryger and RiisgSrd (1988) found that 6 species of
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Fig. 5.1. Gill area (mm2) as a function of dry tissue mass (mg) for the three species of 
freshwater bivalves. Each of the species gill area falls on the same line: gill area (mm2) = 
63.396 • dry tissue mass (mg)0 45®. This relationship is similar to that found for Mytilus 
edulis (broken line) by Jones et al. (1993) over a similar size range.
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Fig. 5.2. Internal ostial area (% of total water channel epithelium) for the three bivalve 
species in relaxed and contracted conditions. The mean relaxed area was significantly 
greater than the mean contracted area (p < 0.0001). The species effect was also 
significant (p < 0.002), with C. fluminea having more ostial area than the other two 
species (mean ± se, n=15).
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Fig. 5.3. Gill area in the contracted state relative to the relaxed state (% relaxed area). 
Each species showed significant differences in area (% relaxed area) with D. polymorpha 
showing the greatest change and T. texasensis showing the least change in area (mean ± 
se, n=15 except for C. fluminea where n = 11).
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freshwater bivalves (including D. polymorpha) have the same water pumping rate when 

corrected for gill area. Similarly, Lei et al. (1996) demonstrated that when corrected for 

differences in body mass, 4 different species of freshwater bivalves (including D. 

polymorpha and C. fluminea) should have the same rate of clearance of particles retained 

with high efficiency. Significant differences in gill dimension have been found within 

species from different habitats (Thiesen 1982; Franz 1993; Payne et al. 1995); these 

differences are apparently related to differences in trophic and other environmental 

factors. Collectively, the available data suggest that the bivalve gill as a water pump, per 

se, has a fundamental design that tends to keep gill dimension and ostial area within a 

narrow range in spite of other differences that exist between species. Some fluctuation 

about this general relationship may exist for animals from different habitats, but overall 

suspension-feeding bivalves may have been held by a common design constraint.

The scaling of gill size as a function of body weight has important implications. 

Jones et al. (1993) pointed out that clearance measurements should be carefully corrected 

for body mass before drawing conclusions from the data. The fact that gill area scales as 

mass to an exponent of less than 1 means that smaller animals have larger gills on a mass- 

specific basis. This generalization can have significant biological implications: based on 

the data presented here, a 20 mg D. polymorpha would have a relative gill area of about 

12.2 mm2/mg; while one 100 mg T. texasensis would have a relative gill area of only 

about 5.0 mm2/mg. Since a large number of zebra mussels often occupy a given area, 

this large number combined with small sizes will lead to significandy larger gill areas and 

higher particle clearance rates from the water column, the end result being that exploitative 

competition may be having negative impacts on the native clam populations. Interference 

competition occuring when zebra mussels attach to unionids may also be a contributing 

factor to the mortality of the nadve clams where zebra mussel infestadons have occurred 

(Schloesser et al. 1996).
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Similarity in the capacity of the water pump does not necessarily correspond to 

similar clearance rates between species. Significant differences in clearance rate exist 

between freshwater bivalves (including those studied here) when feeding on bacterial 

sized particles (Silverman et al. 1995; Silverman et al. 1997). These differences are 

related more to distinct differences in the structure of latero-firontal cirri than to body size. 

Both C. fluminea and D. polymorpha have the most complex Iatero-ffontal cirri when 

compared with unionid species (Silverman et al. 1995; Silverman et al. 1996a,b; 

Silverman et al. 1997). This complexity apparently allows them to more efficiently 

capture bacterial sized particles. Mphlenberg and Riisg&rd (1978) also found differences 

related to cirral structure among 13 species of marine bivalves in their ability to retain 

bacterial-sized particles. Thus, the clearance capacities of bivalves appear to be related to 

the fine structure of the ciliated gill surfaces and total number of cirri but not to 

differences in the scaling of gill area between species.

Another similarity between the species studied here is the size of the internal ostia 

of the gill. Ostial area is between 22 and 30% of gill area in Mytilus (Foster-Smith 1976; 

Jones et al. 1992), while the values reported here range from about 16 to 24% of the 

water channel epithelium in the relaxed condition. C. fluminea has a significantly more 

open gill than D. polymorpha (Fig. 5.2), because of the very large ostia found regionally 

in C. fluminea. (Fig. 5.4) These regions in C. fluminea appear to correspond to the 

plicate gill type found in this species; the large ostia correspond to the apex of the plicae, 

where water canals from several external ostia fuse into a single canal with a common 

internal ostium. More typical ostia are found near the plical troughs. While the values are 

in general agreement with those of other studies, the smaller areas of the species studied 

here reflect the fact that all of these species possess eulamellibranch gills. The base of the 

filaments in eulamellibranch gills unite within sheets of subfilamentar tissue, through 

which the ostia and water canals connect the outside of the gill with the inner water
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Fig. 5.4. Internal ostia in C. fluminea viewed from the inside of the water channel. 
Regionally, several external ostia may lead into a singe large internal ostia. In one case, 5 
external ostia (#’s 1-5) can be seen leading into a single internal ostium (borders denoted 
by arrows).
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channel. This subfilamentar tissue is absent in filibranch gills (refer to Fig. 1.1). Since 

some the measurements in other studies were from filibranch gills, they are not directly 

comparable to the values reported here.

All three of the species in this study demonstrate the ability to significantly 

decrease the internal ostial area of the gill through muscular activity. These muscular 

adjustments correspond to those reported in Chapter 2 and further demonstrate that each 

of these species is capable of muscular regulation of gill dimension. The significant 

differences in the reduction of gross gill area are probably related to the compressibility of 

the gills. The gills of both D. polymorpha and C. fluminea were reduced in size 

significantly more than T. texasensis, which has extensive calcification in its gills 

(Silverman et al. 1983; Silverman et al. 1985; Silverman et al. 1987). Another factor 

leading to differences may be different levels of responsiveness to the contractile stimuli. 

For example, the gills of D. polymorpha respond dramatically to ACH, while the gills of 

C. fluminea may not be as sensitive to this transmitter. In addition to transmitter 

specificity, this sensitivity may be related to the higher rates of paracellular exchange that 

exist across the epithelium in D. polymorpha, as compared to those in C. fluminea (Dietz 

et al. 1995; Zheng and Dietz 1998). Thus, the effective ACH concentrations may have 

been much less in C. fluminea .

Overall, the three species show similarity in terms of overall gill dimensions and 

in the ability to change these dimensions through muscular contraction. This uniformity 

supports the idea that the general structure and function of the gills in these animals is 

similar. Studies providing water flow or clearance rates as a function of live gill area are 

needed to further interpret these relationships.
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The studies presented here indicate that eulamellibranch gills of freshwater 

bivalves have a well organized muscular system that works in coordination with 

connective tissue elements to provide the gill with a ‘postural tone’. The muscle and 

connective tissue elements in each of the three species are similar in their structural 

organization and in their apparent ability to regulate the muscular tone of the gill. The 

collagenous connective tissue of the gill provides the general support of the gill and is 

also important for transmitting the forces generated by the active muscle fibers. The 

response of these muscle fibers to transmitter substances and their sensitivity to the ionic 

makeup of the bathing solution is evidence that they are physiologically active. Overall, 

the size and dimensions of the gills are similar in all three species.

From a theoretical standpoint, there are at least three factors that can be addressed 

in relation to the muscular regulation of the bivalve gill as a water pump. First is the role 

of the distance between the lateral cilia and its affect on interfilament flow rates. The 

interfilament flow rate at maximal pump velocities is apparendy faster than the ciliary tip 

speeds and Jprgensen and coworkers have attributed this phenomenon to positive 

interference between opposing bands of cilia (Jprgensen et al. 1988; Jprgensen 1989; 

Jprgensen 1990). Conversely, when the distances between the opposing ciliary tracts 

decrease to a critical level, the interference becomes negative and this interference is 

possibly the most important factor in the regulation of water flow and pump capacity 

(Jprgensen et al. 1988; Jprgensen 1989; Jprgensen 1990). Unfortunately, these authors 

have assigned a passive, indirect mechanism to the regulation of interfilament distance as 

being a result of muscular activity in the mantle and gill axis, as well as due to valve gape 

(Jprgensen et al. 1988; Jprgensen 1989; Jprgensen 1990). The work presented here 

suggests that the regulation of interfilament distance is not indirect, but is in part the result 

of muscle tone provided by smooth muscle fibers that lie in bands at the base of the 

filaments.
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A second theoretical factor to consider is the role of the resistance to water flow 

provided by the water canals of the gill. Two prominent models of the bivalve gill 

(Foster-Smith 1976; J0rgensen et al. 1986) agree that the resistance through the gill is 

second in importance only to the resistance provided by the excurrent siphon. Foster- 

Smith (1976) estimated that either the excurrent siphon or the gill ostia would need to 

reduce their area to 20% of the fully open area to cause a significant reduction in water 

flow through the gill, assuming that the rest of the system remains unchanged. He 

further argued that the excurrent siphon was the more reasonable point of regulation 

because the ostia could not respond quickly. The work presented here clearly 

demonstrates that the gill dimensions can be rapidly altered (in a matter of seconds) and 

that ostia held in a relaxed state generally become more than 50% smaller following 

stimulation and may close completely.

The third factor is the general compliance of the whole gill to water flow. 

Jqrgensen and colleagues (Jorgensen et al. 1988; J0rgensen 1989; Jorgensen 1990) have 

commented that when the bivalve pump is active, the gill becomes inflated and represents 

little resistance to water flow. As the pumping activity stops, the gill becomes flaccid and 

collapses on itself, resulting in high resistances through the gill. In fact, Jorgensen 

concludes his review of water processing by ciliary feeders by stating, “the rate of water 

pumping constitutes an emergent property of the spatial geometry of the interfilament 

canals and the mantle cavity in the fully inflated state of the collapsible pump” (Jorgensen 

1989). However, the results presented here show that the degree to which the gill inflates 

is not only a function of the ciliary activity, but also of the muscular tone of the gill. The 

relative importance of muscular tone versus ciliary pumping has still not been explicidy 

examined, but is a critical concept.

In isolation of active water pumping the following observations on the gill can be 

made. When the muscles of the gill are completely relaxed, as they are following
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incubation in a calcium-free medium, the gill becomes maximally expanded and very 

fluid. As the muscles contract, not only do the dimensions of the gill change, but the gill 

becomes rigid. Thus, the resistance provided by the gill is not only a passive result of 

ciliary activity filling the gill, but also from the general muscular tone of the gill. 

Endoscopic observations by Tankersely (1996) support this interpretation that the overall 

dimensions of the gill are affected not only by ciliary activity but also gill musculature.

While these studies have focused almost exclusively on the muscle fibers within a 

single gill lamella, it is important to understand that the muscles in the connective tissue 

sheets of the lamella are continuous into the interlamellar septa. This is important because 

it means the dimensions of the water tubes that lead to the suprabranchial chamber are 

under the same muscular control as the rest of the gill. One can think of multiple levels of 

muscular regulation of important relative gill dimensions, even though these may or may 

not function independently in the animal. The interfilament distance can be controlled by 

the bands of muscle that are antagonized by the connective tissue cross struts; the general 

ostial dimension can be controlled by the muscles in the connective tissue sheets in the 

subfilamentar tissue; and, the dimension of the water tubes can be affected by the muscles 

of the interlamellar septae which are continuous with those in the subfilamentar tissue.

Fig. 6.1 gives an interpretation of muscular regulation of the bivalve pump. Inhalant and 

exhalent siphon diameters affect water flow entering and leaving the animal. These 

dimensions are also related to valve gape and the position of the mantle edges. Water 

flow into the gill can be affected by interfilament distance and the dimensions of the ostia 

and water canals of the gill. Finally, the dimensions of the water tubes and the overall 

compliance of the gill affect water flow through the gill and into the suprabranchial 

chamber. Thus, there are several control points through the system that are under direct 

muscular control. When all of the muscles in the system are relaxed, the pump can
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Fig. 6.1. A diagrammatic representation of the changes caused by muscular regulation of 
the bivalve gill and siphons. The fully relaxed state is shown in the top diagram, while a 
significantly contracted state is shown below. The sizes of the arrows indicating water 
movement are intended to suggest the relative magnitude of flow. Excurrent siphon (E); 
Incurrent siphon (I); Suprabranchial chamber (SB).
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operate at maximum capacity (Jprgensen et al. 1988) and this represents the most 

energetically efficient use of the system.

It is also possible that the muscles in the gills have other functions in addition to 

regulation of suspension-feeding activities. For example, expulsion of embryos from the 

gill might be considered an important role for the muscles in the gills of T. texasensis and 

C. fluminea . In unionid mussels, the gills and adductors contract rhythmically to expel 

the brooded larvae (Tankersely 1996). However, the organization of the muscle does not 

suggest this as a primary or sole function. In the case of D. polymorpha, the gill is never 

used for the development of embryos and yet the muscular development and organization 

is similar to that seen in the other species. None of my observations were made on 

animals with developing embryos.

An interesting hypothesis that should be investigated is that the ciliary activity and 

the muscular activity are coordinated through the branchial nerves. Gardiner et al. (1991) 

showed that serotonin not only relaxes the gill musculature, but also increases the ciliary 

activity of the gill. In this situation, the gill would be open to water flow as the driving 

force for water flow increases. In a complementary fashion, one could envision that 

conditions leading to reduction in ciliary activity might also lead to an increase in the 

muscular tone of the gill. Between these two extremes could lie fine tuning of the gill as a 

water pump. Few experiments or studies in bivalve suspension-feeding are designed to 

examine the fine-scale regulation suggested here, and indeed most studies are designed to 

eliminate such regulation as it contributes variability when comparing ‘maximal’ filtration 

rates between different species and/or different studies. Improvements in our ability to 

observe bivalve feeding at various levels of resolution and under various experimental 

conditions, both in vivo and in vitro should allow further understanding of the regulation 

occurring in suspension-feeding bivalves. If pure bulk-flow mechanics driven largely by
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ciliary activity and siphonal musculature are truly the only important regulatory 

components, then regulation is essentially an on-off switching cycle.

Foster-Smith (1975; 1976) demonstrated that pumping rates are a function of 

total ostial area and that some ostia were contracted under different conditions. Owen and 

McCrae (1976) suggested that patches of sensory cilia are coordinated with the motor 

activity of cilia and gill muscles. Unfortunately, very little is known about the 

organization of the nerves of the gill. Previous studies have demonstrated that branchial 

nerves lead to the ciliated epithelial cells where they control ciliary activity (see Paparo 

1988) and the muscles of the gills are associated with nerves. Whether these sets are 

branches from the same nerve trunks and whether these systems are coordinated remains 

to be seen. Overall, the bivalve gill is a remarkably complex structure that seems capable 

of dynamic integration of sensory cues with motor responses. It is an intriguing 

possibility that chemical and mechanical cues invoke coordinated ciliary and muscular 

responses leading to fine regulation of gill function.

Finally, it is possible that the muscles of the gill actively pump water in 

coordination with the cilia. As an inflated gill contracts, the water will be forced in the 

direction of normal water flow. The active cilia will then re-inflate the gill and the cycle 

can continue. A slow but rhythmic contraction cycle could contribute significantly to the 

water pumping capacity of bivalves. In this light, it is interesting that theoretical ciliary 

capacities do not add up to measured pump capacities (Silvester 1988) and Silvester 

concluded that because of this apparent paradox, “one should be alert to the possibility 

that other systems in the mussel may be contributing to the pumping performance”.

Using endoscopic techniques, Tankersley and Dimock (1993) observed rhythmic 

expansion and contraction of the gill in a unionid mussel consistent with such a pumping 

mechanism. Future endoscopic techniques in vivo may begin to answer the question of 

whether the gill is not only a ciliary pump, but a muscular pump as well.
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